Week | Topic | Exam |
---|---|---|
1 | Introduction | |
2 | Single variable Linear Regression | |
3 | Multiple variables Linear Regression | |
4 | Workshop I: Introduction to Kaggle | |
5 | Logistic Regression | |
6 | Regularization | |
7 | Evaluation | |
8 | Workshop II | |
- | Midterm exam (30%) + Kaggle competition (20%) | |
9 | KNN | |
10 | Decision tree | |
11 | Neural network | |
12 | Support Vector Machine (SVM) | |
13 | Clustering: K-Means | |
14 | PCA | |
15 | Modern ML techniques | |
- | Final exam (30%) | |
- | Final project (20%) |
https://www.kaggle.com/c/nida-competition1/submissions
https://otexts.com/fpp2/MA.html
https://towardsdatascience.com/time-series-decomposition-and-statsmodels-parameters-69e54d035453
https://gwthomas.github.io/docs/math4ml.pdf
https://people.idsia.ch/~juergen/
https://github.com/pjwebdev/Basic-Data-Science-Projects
https://www.bounteous.com/insights/2020/09/15/forecasting-time-series-model-using-python-part-one/
Pandas https://pandas.pydata.org/docs/user_guide/10min.html
Useful
- https://twitter.com/DataScienceDojo/status/1454585658685657090?t=dOWacKO387XW_9oC9Ig6aA&s=09
- https://twitter.com/ccmccomb/status/1462554716018290695
Toos:
- https://github.com/CalculatedContent/WeightWatcher
- https://github.com/pycaret/pycaret
- https://github.com/automl/auto-sklearn
- https://autokeras.com/
Useful info
-
https://medium.datadriveninvestor.com/significance-of-i-i-d-in-machine-learning-281da0d0cbef
-
https://www.kaggle.com/gloriousc/insurance-forecast-by-using-linear-regression/script
1.1 https://www.myport.pro/?fbclid=IwAR3_aV_K87KZSMw4jDPDFvIUuwVuUV1CL8XGW_TYV56bx3ZTuNrndSKlmb8
1.2
https://www.morganstanley.com/ideas/process-automation
Diagnostic performance of deep learning based voice analysis for diabetes screening
AI in Healthcare An overview and applications in Ophthalmology
https://www.bc.edu/content/dam/files/schools/cas_sites/cs/pdf/academics/honors/16Lu.pdf
- ML : https://github.com/ml874/Data-Science-Cheatsheet/blob/master/data-science-cheatsheet.pdf
- Probability : https://static1.squarespace.com/static/54bf3241e4b0f0d81bf7ff36/t/55e9494fe4b011aed10e48e5/1441352015658/probability_cheatsheet.pdf
https://www.gsbresearch.or.th/wp-content/uploads/2018/06/20IN_hotissue_AI_internet_detail.pdf