Automated machine learning model building pipeline for microbiome data
Flowchart of the mAML pipeline. Two files indicated at the beginning of the pipeline should be submitted to the mAML web server. Operation steps before training are indicated in the blue inverse-trapezoids.
Performance of mAML compared to benchmark baselines. Labels are abbreviation of each dataset and the metrics used in original study
Framework of the GMrepo ML repository construction. Operation steps are indicated in the blue inverse-trapezoids. Files with name in bold are all contained in the ML repository.
mAML1.0/
├── README.md
├── requirements.txt # requirements
├── LICENSE # MIT License
├── code/
│ ├── sklearn_pipeline.py # main script for the pipeline
│ ├── sklearn_pipeline_config.py # config file for changing classifiers with parameters grid and scalars
│ └── utils.py # usefull functions
├── datasets
│ ├── GMrepo_datasets/
│ │ ├── GMrepo.ipynb # data download andd process ipython notebook (python)
│ │ ├── amplicon.zip # amplicon datasets
│ │ ├── metagenome.zip # metagenome datasets
│ │ ├── phyloseq.ipynb # seperate phenotypes and generate phyloseq.Rdata (R)
│ │ └── ...
│ └── benchmark_datasets # 18 benchmark datasets for testing the performance of mAML
└── results # benchmark results
├── Cho2012_Antibiotics_cecal.5
├── Cho2012_Antibiotics_cecal.5.csv_20191114034958.log
├── Cho2012_Antibiotics_fecal.5
├── Cho2012_Antibiotics_fecal.5.csv_20191114081356.log
...
├── Morgan2012_IBD.3.csv_20191114125857.log
├── Qin2012_Diabetes
├── Qin2012_Diabetes.csv_20191114130638.log
├── Qin2014_Cirrhosis
├── Qin2014_Cirrhosis.csv.20191122101417.log
├── Ravel2011_Vaginal
├── Ravel2011_Vaginal.csv_20191114132211.log
├── Wu2011_Diet
├── Wu2011_Diet.csv_20191114020330.log
├── Yang2010_EsophagitisPDX.4
├── Yang2010_EsophagitisPDX.4.csv_20191114132601.log
└── work.sh # shell scripts for regenerating benchmark results
git clone https://github.com/yangfenglong/mAML1.0.git
cd mAML1.0
Use the docker image for the running environment [recommended] .
python version is 3.7.3.
pip3 install -r requirements.txt
git clone https://github.com/jundongl/scikit-feature.git
# clone to your Python lib path to use MRMR feature selection method
# from skfeature.function.information_theoretical_based import MRMR
usage: sklearn_pipeline.py --help or -h
A pipeline for automatically identify the best performing combinations of scalars and classifiers for microbiomic data
positional arguments:
X_file feature matrix file (required)
Y_file map file (required)
optional arguments:
-h, --help show this help message and exit
--outdir OUTDIR, -o OUTDIR
path to store analysis results, default='./'
--prevalence PREVALENCE, -p PREVALENCE
filter low within-class prevalence features, default= 0.2
--mrmr_n MRMR_N number of features selected with MRMR, default=0
--over_sampling over-sampling with SMOTE
--search tune parameters of each classifier while selecting the best scaler and classifier
--outer_cv OUTER_CV number of fold in the outer loop of nested cross validation default=10
--inner_cv INNER_CV number of fold in the inner loop of nested cross validation, default=5
--scoring SCORING one of ['accuracy', 'average_precision', 'f1', 'f1_micro', 'f1_macro', 'f1_weighted', 'f1_samples', 'neg_log_loss', 'precision', 'recall', 'roc_auc'], default='accuracy'
--n_jobs N_JOBS, -j N_JOBS
number of jobs to run in parallel, default= 1
Example:
python sklearn_pipeline.py Gevers2014_IBD_ileum.csv Gevers2014_IBD_ileum.mf.csv --mrmr_n 20 --over_sampling --outdir ./
# Building a machine learning model for one dataset
python ../code/sklearn_pipeline.py \
../datasets/Cho2012_Antibiotics_cecal.5/Cho2012_Antibiotics_cecal.5.csv \
../datasets/Cho2012_Antibiotics_cecal.5/Cho2012_Antibiotics_cecal.5.mf.csv \
--outdir Cho2012_Antibiotics_cecal.5 --search --over_sampling --mrmr_n 50 --n_jobs 4
Visualizations for the best model of 'Huttenhower2012_HMP.BS.5' dataset: confusing matrix (A), ROC curve (B), classification report (C) and the top important features (D, default: top 20). In case of decision Tree based models, feature importances bar plot will be provided instead of feature’s coefficient plot.
You can alse simply upload your own feature data to our mAML web-server to automatically build a predictive model following the tutorial.
If you find mMAL pipeline useful in your research, please consider citing the following paper:
@article{10.1093/database/baaa050,
author = {Yang, Fenglong and Zou, Quan},
title = "{mAML: an automated machine learning pipeline with a microbiome repository for human disease classification}",
journal = {Database},
volume = {2020},
year = {2020},
month = {06},
issn = {1758-0463},
doi = {10.1093/database/baaa050},
url = {https://doi.org/10.1093/database/baaa050},
note = {baaa050},
eprint = {https://academic.oup.com/database/article-pdf/doi/10.1093/database/baaa050/33426278/baaa050.pdf},
}
Any questions, contact me: yangfenglong110@126.com.