EchoPrime: A Multi-Video View-Informed Vision-Language Model for Comprehensive Echocardiography Interpretation
This repository contains the official inference code for the following paper:
EchoPrime: A Multi-Video View-Informed Vision-Language Model for Comprehensive Echocardiography Interpretation
Milos Vukadinovic, Xiu Tang, Neal Yuan, Paul Cheng, Debiao Li, Susan Cheng, Bryan He*, David Ouyang*
Read the paper on arXiv,
See the demo
- Clone the repository and navigate to the EchoPrime directory
- Download model data
wget https://github.com/echonet/EchoPrime/releases/download/v1.0.0/model_data.zip
wget https://github.com/echonet/EchoPrime/releases/download/v1.0.0/candidate_embeddings_p1.pt
wget https://github.com/echonet/EchoPrime/releases/download/v1.0.0/candidate_embeddings_p2.pt
unzip model_data.zip
mv candidate_embeddings_p1.pt model_data/candidates_data/
mv candidate_embeddings_p2.pt model_data/candidates_data/
- Install
requirements.txt
- Follow EchoPrimeDemo.ipynb notebook
This project is licensed under the terms of the MIT license.
Make sure that you have the correct libraries installed. Use requirements.txt to install the dependencies.
docker build -t echo-prime .
docker run -d --name echoprime-container --gpus all echo-prime tail -f /dev/null
Then you can attach to this container and run the notebook located at
/workspace/EchoPrime/EchoPrimeDemo.ipynb
.