Skip to content

Commit

Permalink
add Dart booster
Browse files Browse the repository at this point in the history
  • Loading branch information
marugari committed Jun 5, 2016
1 parent 9a48a40 commit da6b5c4
Show file tree
Hide file tree
Showing 3 changed files with 340 additions and 3 deletions.
25 changes: 24 additions & 1 deletion doc/parameter.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,8 @@ In R-package, you can use .(dot) to replace under score in the parameters, for e
General Parameters
------------------
* booster [default=gbtree]
- which booster to use, can be gbtree or gblinear. gbtree uses tree based model while gblinear uses linear function.
- which booster to use, can be gbtree, gblinear or dart.
 gbtree and dart use tree based model while gblinear uses linear function.
* silent [default=0]
- 0 means printing running messages, 1 means silent mode.
* nthread [default to maximum number of threads available if not set]
Expand Down Expand Up @@ -74,6 +75,28 @@ Parameters for Tree Booster
* scale_pos_weight, [default=0]
- Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases) See [Parameters Tuning](how_to/param_tuning.md) for more discussion. Also see Higgs Kaggle competition demo for examples: [R](../demo/kaggle-higgs/higgs-train.R ), [py1](../demo/kaggle-higgs/higgs-numpy.py ), [py2](../demo/kaggle-higgs/higgs-cv.py ), [py3](../demo/guide-python/cross_validation.py)

Additional parameters for Dart
------------------------------
* sample_type [default=0]
- type of sampling algorithm.
- "uniform": dropped trees are selected uniformly.
- "weighted": dropped trees are selected in proportion to weight.
* normalize_type [default=0]
- type of normalization algorithm.
- "original": weight of new trees are 1 / k
dropped trees are scaled by a factor of k / (k + 1)
- "gbtree": weight of new trees are k / (k + 1)
dropped trees are scaled by a factor of k / (k + 1)
- "learning_rate": weight of new trees are 1 / (1 + learning_rate)
dropped trees are scaled by a factor of 1 / (1 + learning_rate)
* rate_drop [default=0.0]
- dropout rate.
- range: [0.0, 1.0]
* skip_drop [default=0.0]
- probability of skip dropout.
If a dropout is skipped, new trees are added in the same manner as gbtree.
- range: [0.0, 1.0]

Parameters for Linear Booster
-----------------------------
* lambda [default=0]
Expand Down
273 changes: 271 additions & 2 deletions src/gbm/gbtree.cc
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@
#include <limits>
#include "../common/common.h"

#include "../common/random.h"

namespace xgboost {
namespace gbm {

Expand Down Expand Up @@ -47,6 +49,43 @@ struct GBTreeTrainParam : public dmlc::Parameter<GBTreeTrainParam> {
}
};

/*! \brief training parameters */
struct DartTrainParam : public dmlc::Parameter<DartTrainParam> {
/*! \brief whether to not print info during training */
bool silent;
/*! \brief type of sampling algorithm */
int sample_type;
/*! \brief type of normalization algorithm */
int normalize_type;
/*! \brief how many trees are dropped */
float rate_drop;
/*! \brief whether to drop trees */
float skip_drop;
/*! \brief learning step size for a time */
float learning_rate;
// declare parameters
DMLC_DECLARE_PARAMETER(DartTrainParam) {
DMLC_DECLARE_FIELD(silent).set_default(false)
.describe("Not print information during trainig.");
DMLC_DECLARE_FIELD(sample_type).set_default(0)
.add_enum("uniform", 0)
.add_enum("weighted", 1)
.describe("Different types of sampling algorithm.");
DMLC_DECLARE_FIELD(normalize_type).set_default(0)
.add_enum("original", 0)
.add_enum("gbtree", 1)
.add_enum("learning_rate", 2)
.describe("Different types of normalization algorithm.");
DMLC_DECLARE_FIELD(rate_drop).set_range(0.0f, 1.0f).set_default(0.0f)
.describe("Parameter of how many trees are dropped.");
DMLC_DECLARE_FIELD(skip_drop).set_range(0.0f, 1.0f).set_default(0.0f)
.describe("Parameter of whether to drop trees.");
DMLC_DECLARE_FIELD(learning_rate).set_lower_bound(0.0f).set_default(0.3f)
.describe("Learning rate(step size) of update.");
DMLC_DECLARE_ALIAS(learning_rate, eta);
}
};

/*! \brief model parameters */
struct GBTreeModelParam : public dmlc::Parameter<GBTreeModelParam> {
/*! \brief number of trees */
Expand Down Expand Up @@ -313,8 +352,9 @@ class GBTree : public GradientBooster {
}
}
// commit new trees all at once
inline void CommitModel(std::vector<std::unique_ptr<RegTree> >&& new_trees,
int bst_group) {
virtual void
CommitModel(std::vector<std::unique_ptr<RegTree> >&& new_trees,
int bst_group) {
for (size_t i = 0; i < new_trees.size(); ++i) {
trees.push_back(std::move(new_trees[i]));
tree_info.push_back(bst_group);
Expand Down Expand Up @@ -475,14 +515,243 @@ class GBTree : public GradientBooster {
std::vector<std::unique_ptr<TreeUpdater> > updaters;
};

// dart
class Dart : public GBTree {
public:
Dart() {}

void Configure(const std::vector<std::pair<std::string, std::string> >& cfg) override {
GBTree::Configure(cfg);
if (trees.size() == 0) {
dparam.InitAllowUnknown(cfg);
}
}

void Load(dmlc::Stream* fi) override {
GBTree::Load(fi);
weight_drop.resize(mparam.num_trees);
if (mparam.num_trees != 0) {
fi->Read(&weight_drop);
}
}

void Save(dmlc::Stream* fo) const override {
GBTree::Save(fo);
if (weight_drop.size() != 0) {
fo->Write(weight_drop);
}
}

// predict the leaf scores with dropout if ntree_limit = 0
void Predict(DMatrix* p_fmat,
int64_t buffer_offset,
std::vector<float>* out_preds,
unsigned ntree_limit) override {
DropTrees(ntree_limit);
const MetaInfo& info = p_fmat->info();
int nthread;
#pragma omp parallel
{
nthread = omp_get_num_threads();
}
InitThreadTemp(nthread);
std::vector<float> &preds = *out_preds;
const size_t stride = p_fmat->info().num_row * mparam.num_output_group;
preds.resize(stride * (mparam.size_leaf_vector+1));
// start collecting the prediction
dmlc::DataIter<RowBatch>* iter = p_fmat->RowIterator();

iter->BeforeFirst();
while (iter->Next()) {
const RowBatch &batch = iter->Value();
// parallel over local batch
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
const int tid = omp_get_thread_num();
RegTree::FVec &feats = thread_temp[tid];
int64_t ridx = static_cast<int64_t>(batch.base_rowid + i);
CHECK_LT(static_cast<size_t>(ridx), info.num_row);
// loop over output groups
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->Pred(batch[i],
buffer_offset < 0 ? -1 : buffer_offset + ridx,
gid, info.GetRoot(ridx), &feats,
&preds[ridx * mparam.num_output_group + gid], stride,
ntree_limit);
}
}
}
}

void Predict(const SparseBatch::Inst& inst,
std::vector<float>* out_preds,
unsigned ntree_limit,
unsigned root_index) override {
DropTrees(1);
if (thread_temp.size() == 0) {
thread_temp.resize(1, RegTree::FVec());
thread_temp[0].Init(mparam.num_feature);
}
out_preds->resize(mparam.num_output_group * (mparam.size_leaf_vector+1));
// loop over output groups
for (int gid = 0; gid < mparam.num_output_group; ++gid) {
this->Pred(inst, -1, gid, root_index, &thread_temp[0],
&(*out_preds)[gid], mparam.num_output_group,
ntree_limit);
}
}

protected:
// commit new trees all at once
virtual void
CommitModel(std::vector<std::unique_ptr<RegTree> >&& new_trees,
int bst_group) {
for (size_t i = 0; i < new_trees.size(); ++i) {
trees.push_back(std::move(new_trees[i]));
tree_info.push_back(bst_group);
}
mparam.num_trees += static_cast<int>(new_trees.size());
size_t num_drop = NormalizeTrees(new_trees.size());
if (dparam.silent != 1) {
LOG(INFO) << "drop " << num_drop << " trees, "
<< "weight = " << weight_drop.back();
}
}
// predict the leaf scores without dropped trees
inline void Pred(const RowBatch::Inst &inst,
int64_t buffer_index,
int bst_group,
unsigned root_index,
RegTree::FVec *p_feats,
float *out_pred,
size_t stride,
unsigned ntree_limit) {
float psum = 0.0f;
// sum of leaf vector
std::vector<float> vec_psum(mparam.size_leaf_vector, 0.0f);
const int64_t bid = this->BufferOffset(buffer_index, bst_group);
p_feats->Fill(inst);
for (size_t i = 0; i < trees.size(); ++i) {
if (tree_info[i] == bst_group) {
bool drop = (std::find(idx_drop.begin(), idx_drop.end(), i) != idx_drop.end());
if (!drop) {
int tid = trees[i]->GetLeafIndex(*p_feats, root_index);
psum += weight_drop[i] * (*trees[i])[tid].leaf_value();
for (int j = 0; j < mparam.size_leaf_vector; ++j) {
vec_psum[j] += weight_drop[i] * trees[i]->leafvec(tid)[j];
}
}
}
}
p_feats->Drop(inst);
// updated the buffered results
if (bid >= 0 && ntree_limit == 0) {
pred_counter[bid] = static_cast<unsigned>(trees.size());
pred_buffer[bid] = psum;
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
pred_buffer[bid + i + 1] = vec_psum[i];
}
}
out_pred[0] = psum;
for (int i = 0; i < mparam.size_leaf_vector; ++i) {
out_pred[stride * (i + 1)] = vec_psum[i];
}
}

// select dropped trees
inline void DropTrees(unsigned ntree_limit_drop) {
std::uniform_real_distribution<> runif(0.0, 1.0);
auto& rnd = common::GlobalRandom();
// reset
idx_drop.clear();
// sample dropped trees
bool skip = false;
if (dparam.skip_drop > 0.0) skip = (runif(rnd) < dparam.skip_drop);
if (ntree_limit_drop == 0 && !skip) {
if (dparam.sample_type == 1) {
float sum_weight = 0.0;
for (size_t i = 0; i < weight_drop.size(); ++i) {
sum_weight += weight_drop[i];
}
for (size_t i = 0; i < weight_drop.size(); ++i) {
if (runif(rnd) < dparam.rate_drop * weight_drop.size() * weight_drop[i] / sum_weight) {
idx_drop.push_back(i);
}
}
} else {
for (size_t i = 0; i < weight_drop.size(); ++i) {
if (runif(rnd) < dparam.rate_drop) {
idx_drop.push_back(i);
}
}
}
}
}
// set normalization factors
inline size_t NormalizeTrees(size_t size_new_trees) {
size_t num_drop = idx_drop.size();
float factor = 1.0 * num_drop / (num_drop + 1.0);
if (num_drop == 0) {
for (size_t i = 0; i < size_new_trees; ++i) {
weight_drop.push_back(1.0);
}
} else {
if (dparam.normalize_type == 2) {
// normalize_type 2
float fl = 1.0 * num_drop / (num_drop + dparam.learning_rate);
for (size_t i = 0; i < idx_drop.size(); ++i) {
weight_drop[i] *= fl;
}
for (size_t i = 0; i < size_new_trees; ++i) {
weight_drop.push_back(fl);
}
} else if (dparam.normalize_type == 1) {
// normalize_type 1
for (size_t i = 0; i < idx_drop.size(); ++i) {
weight_drop[i] *= factor;
}
for (size_t i = 0; i < size_new_trees; ++i) {
weight_drop.push_back(factor);
}
} else {
// normalize_type 0
for (size_t i = 0; i < idx_drop.size(); ++i) {
weight_drop[i] *= factor;
}
for (size_t i = 0; i < size_new_trees; ++i) {
weight_drop.push_back(1.0 / (num_drop + 1.0));
}
}
}
// reset
idx_drop.clear();
return num_drop;
}

// --- data structure ---
// training parameter
DartTrainParam dparam;
/*! \brief prediction buffer */
std::vector<float> weight_drop;
// indexes of dropped trees
std::vector<size_t> idx_drop;
};

// register the ojective functions
DMLC_REGISTER_PARAMETER(GBTreeModelParam);
DMLC_REGISTER_PARAMETER(GBTreeTrainParam);
DMLC_REGISTER_PARAMETER(DartTrainParam);

XGBOOST_REGISTER_GBM(GBTree, "gbtree")
.describe("Tree booster, gradient boosted trees.")
.set_body([]() {
return new GBTree();
});
XGBOOST_REGISTER_GBM(Dart, "dart")
.describe("Tree booster, dart.")
.set_body([]() {
return new Dart();
});
} // namespace gbm
} // namespace xgboost
45 changes: 45 additions & 0 deletions tests/python/test_basic_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,51 @@ def test_glm(self):
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
assert err < 0.1

def test_dart(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth': 5, 'objective': 'binary:logistic', 'booster': 'dart'}
# specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# this is prediction
preds = bst.predict(dtest, ntree_limit=num_round)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1

# save dmatrix into binary buffer
dtest.save_binary('dtest.buffer')
# save model
bst.save_model('xgb.model.dart')
# load model and data in
bst2 = xgb.Booster(params=param, model_file='xgb.model.dart')
dtest2 = xgb.DMatrix('dtest.buffer')
preds2 = bst2.predict(dtest2, ntree_limit=num_round)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0

# check whether sample_type and normalize_type work
num_round = 50
param['silent'] = True
param['learning_rate'] = 0.1
param['rate_drop'] = 0.1
preds_list = []
for p in [[p0, p1] for p0 in ['uniform', 'weighted'] for p1 in ['original', 'gbtree', 'learning_rate']]:
param['sample_type'] = p[0]
param['normalize_type'] = p[1]
bst = xgb.train(param, dtrain, num_round, watchlist)
preds = bst.predict(dtest, ntree_limit=num_round)
err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
assert err < 0.1
preds_list.append(preds)

for ii in range(len(preds_list)):
for jj in range(ii + 1, len(preds_list)):
assert np.sum(np.abs(preds_list[ii] - preds_list[jj])) > 0

def test_eta_decay(self):
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 4
Expand Down

0 comments on commit da6b5c4

Please sign in to comment.