Skip to content

Commit

Permalink
add segment with keyword issue (langgenius#3351)
Browse files Browse the repository at this point in the history
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
  • Loading branch information
2 people authored and dengpeng committed Jun 16, 2024
1 parent 87301db commit 45ef606
Show file tree
Hide file tree
Showing 3 changed files with 89 additions and 80 deletions.
3 changes: 3 additions & 0 deletions api/core/rag/datasource/keyword/jieba/jieba.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,9 @@ def add_texts(self, texts: list[Document], **kwargs):
text = texts[i]
if keywords_list:
keywords = keywords_list[i]
if not keywords:
keywords = keyword_table_handler.extract_keywords(text.page_content,
self._config.max_keywords_per_chunk)
else:
keywords = keyword_table_handler.extract_keywords(text.page_content, self._config.max_keywords_per_chunk)
self._update_segment_keywords(self.dataset.id, text.metadata['doc_id'], list(keywords))
Expand Down
162 changes: 83 additions & 79 deletions api/services/dataset_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -1046,73 +1046,11 @@ def create_segment(cls, args: dict, document: Document, dataset: Dataset):
credentials=embedding_model.credentials,
texts=[content]
)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status='completed',
indexing_at=datetime.datetime.utcnow(),
completed_at=datetime.datetime.utcnow(),
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = args['answer']

db.session.add(segment_document)
db.session.commit()

# save vector index
try:
VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
except Exception as e:
logging.exception("create segment index failed")
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.utcnow()
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
return segment

@classmethod
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
embedding_model = None
if dataset.indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
pre_segment_data_list = []
segment_data_list = []
keywords_list = []
for segment_item in segments:
content = segment_item['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality' and embedding_model:
# calc embedding use tokens
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
tokens = model_type_instance.get_num_tokens(
model=embedding_model.model,
credentials=embedding_model.credentials,
texts=[content]
)
lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
with redis_client.lock(lock_name, timeout=600):
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
Expand All @@ -1129,25 +1067,91 @@ def multi_create_segment(cls, segments: list, document: Document, dataset: Datas
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = segment_item['answer']
db.session.add(segment_document)
segment_data_list.append(segment_document)
segment_document.answer = args['answer']

pre_segment_data_list.append(segment_document)
keywords_list.append(segment_item['keywords'])
db.session.add(segment_document)
db.session.commit()

try:
# save vector index
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
except Exception as e:
logging.exception("create segment index failed")
for segment_document in segment_data_list:
try:
VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
except Exception as e:
logging.exception("create segment index failed")
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.utcnow()
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
return segment_data_list
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
return segment

@classmethod
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
with redis_client.lock(lock_name, timeout=600):
embedding_model = None
if dataset.indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
pre_segment_data_list = []
segment_data_list = []
keywords_list = []
for segment_item in segments:
content = segment_item['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality' and embedding_model:
# calc embedding use tokens
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
tokens = model_type_instance.get_num_tokens(
model=embedding_model.model,
credentials=embedding_model.credentials,
texts=[content]
)
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status='completed',
indexing_at=datetime.datetime.utcnow(),
completed_at=datetime.datetime.utcnow(),
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = segment_item['answer']
db.session.add(segment_document)
segment_data_list.append(segment_document)

pre_segment_data_list.append(segment_document)
keywords_list.append(segment_item['keywords'])

try:
# save vector index
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
except Exception as e:
logging.exception("create segment index failed")
for segment_document in segment_data_list:
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.utcnow()
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
return segment_data_list

@classmethod
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
Expand Down
4 changes: 3 additions & 1 deletion web/app/components/base/tag-input/index.tsx
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,9 @@ const TagInput: FC<TagInputProps> = ({
}

onChange([...items, valueTrimed])
setValue('')
setTimeout(() => {
setValue('')
})
}
}

Expand Down

0 comments on commit 45ef606

Please sign in to comment.