Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(pt): add universal test for loss #4354

Merged
merged 4 commits into from
Nov 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions deepmd/dpmodel/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
"double": np.float64,
"int32": np.int32,
"int64": np.int64,
"bool": bool,
"bool": np.bool_,
iProzd marked this conversation as resolved.
Show resolved Hide resolved
"default": GLOBAL_NP_FLOAT_PRECISION,
# NumPy doesn't have bfloat16 (and doesn't plan to add)
# ml_dtypes is a solution, but it seems not supporting np.save/np.load
Expand All @@ -45,7 +45,7 @@
np.int32: "int32",
np.int64: "int64",
ml_dtypes.bfloat16: "bfloat16",
bool: "bool",
np.bool_: "bool",
}
assert set(RESERVED_PRECISON_DICT.keys()) == set(PRECISION_DICT.values())
DEFAULT_PRECISION = "float64"
Expand Down
8 changes: 4 additions & 4 deletions deepmd/pt/loss/dos.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,10 +151,10 @@ def forward(self, input_dict, model, label, natoms, learning_rate=0.0, mae=False
if self.has_acdf and "atom_dos" in model_pred and "atom_dos" in label:
find_local = label.get("find_atom_dos", 0.0)
pref_acdf = pref_acdf * find_local
local_tensor_pred_cdf = torch.cusum(
local_tensor_pred_cdf = torch.cumsum(
model_pred["atom_dos"].reshape([-1, natoms, self.numb_dos]), dim=-1
)
local_tensor_label_cdf = torch.cusum(
local_tensor_label_cdf = torch.cumsum(
label["atom_dos"].reshape([-1, natoms, self.numb_dos]), dim=-1
)
diff = (local_tensor_pred_cdf - local_tensor_label_cdf).reshape(
Expand Down Expand Up @@ -199,10 +199,10 @@ def forward(self, input_dict, model, label, natoms, learning_rate=0.0, mae=False
if self.has_cdf and "dos" in model_pred and "dos" in label:
find_global = label.get("find_dos", 0.0)
pref_cdf = pref_cdf * find_global
global_tensor_pred_cdf = torch.cusum(
global_tensor_pred_cdf = torch.cumsum(
model_pred["dos"].reshape([-1, self.numb_dos]), dim=-1
)
global_tensor_label_cdf = torch.cusum(
global_tensor_label_cdf = torch.cumsum(
label["dos"].reshape([-1, self.numb_dos]), dim=-1
)
diff = global_tensor_pred_cdf - global_tensor_label_cdf
Expand Down
1 change: 1 addition & 0 deletions source/tests/universal/common/cases/loss/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
11 changes: 11 additions & 0 deletions source/tests/universal/common/cases/loss/loss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# SPDX-License-Identifier: LGPL-3.0-or-later


from .utils import (
LossTestCase,
)


class LossTest(LossTestCase):
def setUp(self) -> None:
LossTestCase.setUp(self)
79 changes: 79 additions & 0 deletions source/tests/universal/common/cases/loss/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# SPDX-License-Identifier: LGPL-3.0-or-later

import numpy as np

from deepmd.utils.data import (
DataRequirementItem,
)

from .....seed import (
GLOBAL_SEED,
)


class LossTestCase:
"""Common test case for loss function."""

def setUp(self):
pass

iProzd marked this conversation as resolved.
Show resolved Hide resolved
def test_label_keys(self):
module = self.forward_wrapper(self.module)

Check notice

Code scanning / CodeQL

Unused local variable Note test

Variable module is not used.
label_requirement = self.module.label_requirement
label_dict = {item.key: item for item in label_requirement}
label_keys = sorted(label_dict.keys())
label_keys_expected = sorted(
[key for key in self.key_to_pref_map if self.key_to_pref_map[key] > 0]
)
np.testing.assert_equal(label_keys_expected, label_keys)

iProzd marked this conversation as resolved.
Show resolved Hide resolved
def test_forward(self):
module = self.forward_wrapper(self.module)
label_requirement = self.module.label_requirement
label_dict = {item.key: item for item in label_requirement}
label_keys = sorted(label_dict.keys())
natoms = 5
nframes = 2

def fake_model():
model_predict = {
data_key: fake_input(
label_dict[data_key], natoms=natoms, nframes=nframes
)
for data_key in label_keys
}
if "atom_ener" in model_predict:
model_predict["atom_energy"] = model_predict.pop("atom_ener")
model_predict.update(
{"mask_mag": np.ones([nframes, natoms, 1], dtype=np.bool_)}
iProzd marked this conversation as resolved.
Show resolved Hide resolved
)
return model_predict

labels = {
data_key: fake_input(label_dict[data_key], natoms=natoms, nframes=nframes)
for data_key in label_keys
}
labels.update({"find_" + data_key: 1.0 for data_key in label_keys})

_, loss, more_loss = module(
{},
fake_model,
labels,
natoms,
1.0,
)


def fake_input(data_item: DataRequirementItem, natoms=5, nframes=2) -> np.ndarray:
ndof = data_item.ndof
atomic = data_item.atomic
repeat = data_item.repeat
rng = np.random.default_rng(seed=GLOBAL_SEED)
dtype = data_item.dtype if data_item.dtype is not None else np.float64
if atomic:
data = rng.random([nframes, natoms, ndof], dtype)
else:
data = rng.random([nframes, ndof], dtype)
if repeat != 1:
data = np.repeat(data, repeat).reshape([nframes, -1])
return data
1 change: 1 addition & 0 deletions source/tests/universal/dpmodel/loss/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
203 changes: 203 additions & 0 deletions source/tests/universal/dpmodel/loss/test_loss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from collections import (
OrderedDict,
)

from ....consistent.common import (
parameterize_func,
)


def LossParamEnergy(
starter_learning_rate=1.0,
pref_e=1.0,
pref_f=1.0,
pref_v=1.0,
pref_ae=1.0,
):
key_to_pref_map = {
"energy": pref_e,
"force": pref_f,
"virial": pref_v,
"atom_ener": pref_ae,
}
input_dict = {
"key_to_pref_map": key_to_pref_map,
"starter_learning_rate": starter_learning_rate,
"start_pref_e": pref_e,
"limit_pref_e": pref_e / 2,
"start_pref_f": pref_f,
"limit_pref_f": pref_f / 2,
"start_pref_v": pref_v,
"limit_pref_v": pref_v / 2,
"start_pref_ae": pref_ae,
"limit_pref_ae": pref_ae / 2,
}
return input_dict


LossParamEnergyList = parameterize_func(
LossParamEnergy,
OrderedDict(
{
"pref_e": (1.0, 0.0),
"pref_f": (1.0, 0.0),
"pref_v": (1.0, 0.0),
"pref_ae": (1.0, 0.0),
}
),
)
# to get name for the default function
LossParamEnergy = LossParamEnergyList[0]


def LossParamEnergySpin(
starter_learning_rate=1.0,
pref_e=1.0,
pref_fr=1.0,
pref_fm=1.0,
pref_v=1.0,
pref_ae=1.0,
):
key_to_pref_map = {
"energy": pref_e,
"force": pref_fr,
"force_mag": pref_fm,
"virial": pref_v,
"atom_ener": pref_ae,
}
input_dict = {
"key_to_pref_map": key_to_pref_map,
"starter_learning_rate": starter_learning_rate,
"start_pref_e": pref_e,
"limit_pref_e": pref_e / 2,
"start_pref_fr": pref_fr,
"limit_pref_fr": pref_fr / 2,
"start_pref_fm": pref_fm,
"limit_pref_fm": pref_fm / 2,
"start_pref_v": pref_v,
"limit_pref_v": pref_v / 2,
"start_pref_ae": pref_ae,
"limit_pref_ae": pref_ae / 2,
}
return input_dict

iProzd marked this conversation as resolved.
Show resolved Hide resolved

LossParamEnergySpinList = parameterize_func(
LossParamEnergySpin,
OrderedDict(
{
"pref_e": (1.0, 0.0),
"pref_fr": (1.0, 0.0),
"pref_fm": (1.0, 0.0),
"pref_v": (1.0, 0.0),
"pref_ae": (1.0, 0.0),
}
),
)
# to get name for the default function
LossParamEnergySpin = LossParamEnergySpinList[0]


def LossParamDos(
starter_learning_rate=1.0,
pref_dos=1.0,
pref_ados=1.0,
):
key_to_pref_map = {
"dos": pref_dos,
"atom_dos": pref_ados,
}
input_dict = {
"key_to_pref_map": key_to_pref_map,
"starter_learning_rate": starter_learning_rate,
"numb_dos": 2,
"start_pref_dos": pref_dos,
"limit_pref_dos": pref_dos / 2,
"start_pref_ados": pref_ados,
"limit_pref_ados": pref_ados / 2,
"start_pref_cdf": 0.0,
"limit_pref_cdf": 0.0,
"start_pref_acdf": 0.0,
"limit_pref_acdf": 0.0,
}
return input_dict


LossParamDosList = parameterize_func(
LossParamDos,
OrderedDict(
{
"pref_dos": (1.0,),
"pref_ados": (1.0, 0.0),
}
),
) + parameterize_func(
LossParamDos,
OrderedDict(
{
"pref_dos": (0.0,),
"pref_ados": (1.0,),
}
),
)

# to get name for the default function
LossParamDos = LossParamDosList[0]


def LossParamTensor(
pref=1.0,
pref_atomic=1.0,
):
tensor_name = "test_tensor"
key_to_pref_map = {
tensor_name: pref,
f"atomic_{tensor_name}": pref_atomic,
}
input_dict = {
"key_to_pref_map": key_to_pref_map,
"tensor_name": tensor_name,
"tensor_size": 2,
"label_name": tensor_name,
"pref": pref,
"pref_atomic": pref_atomic,
}
return input_dict


LossParamTensorList = parameterize_func(
LossParamTensor,
OrderedDict(
{
"pref": (1.0,),
"pref_atomic": (1.0, 0.0),
}
),
) + parameterize_func(
LossParamTensor,
OrderedDict(
{
"pref": (0.0,),
"pref_atomic": (1.0,),
}
),
)
# to get name for the default function
LossParamTensor = LossParamTensorList[0]


def LossParamProperty():
key_to_pref_map = {
"property": 1.0,
}
input_dict = {
"key_to_pref_map": key_to_pref_map,
"task_dim": 2,
}
return input_dict


LossParamPropertyList = [LossParamProperty]
# to get name for the default function
LossParamProperty = LossParamPropertyList[0]
iProzd marked this conversation as resolved.
Show resolved Hide resolved
Loading