Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Chore: refactor get standard model #4205

Merged
merged 5 commits into from
Oct 14, 2024
Merged
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 33 additions & 62 deletions deepmd/pt/model/model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,29 @@
)


def _get_standard_model_components(model_params, ntypes):
# descriptor
model_params["descriptor"]["ntypes"] = ntypes
model_params["descriptor"]["type_map"] = copy.deepcopy(model_params["type_map"])
descriptor = BaseDescriptor(**model_params["descriptor"])
# fitting
fitting_net = model_params.get("fitting_net", {})
fitting_net["type"] = fitting_net.get("type", "ener")
fitting_net["ntypes"] = descriptor.get_ntypes()
fitting_net["type_map"] = copy.deepcopy(model_params["type_map"])
fitting_net["mixed_types"] = descriptor.mixed_types()
if fitting_net["type"] in ["dipole", "polar"]:
fitting_net["embedding_width"] = descriptor.get_dim_emb()
fitting_net["dim_descrpt"] = descriptor.get_dim_out()
grad_force = "direct" not in fitting_net["type"]
if not grad_force:
fitting_net["out_dim"] = descriptor.get_dim_emb()
if "ener" in fitting_net["type"]:
fitting_net["return_energy"] = True
fitting = BaseFitting(**fitting_net)
return descriptor, fitting, fitting_net["type"]


def get_spin_model(model_params):
model_params = copy.deepcopy(model_params)
if not model_params["spin"]["use_spin"] or isinstance(
Expand Down Expand Up @@ -117,25 +140,9 @@
if "descriptor" in sub_model_params:
# descriptor
sub_model_params["descriptor"]["ntypes"] = ntypes
sub_model_params["descriptor"]["type_map"] = copy.deepcopy(
model_params["type_map"]
descriptor, fitting, _ = _get_standard_model_components(
sub_model_params, ntypes
)
descriptor = BaseDescriptor(**sub_model_params["descriptor"])
# fitting
fitting_net = sub_model_params.get("fitting_net", {})
fitting_net["type"] = fitting_net.get("type", "ener")
fitting_net["ntypes"] = descriptor.get_ntypes()
fitting_net["type_map"] = copy.deepcopy(model_params["type_map"])
fitting_net["mixed_types"] = descriptor.mixed_types()
if fitting_net["type"] in ["dipole", "polar"]:
fitting_net["embedding_width"] = descriptor.get_dim_emb()
fitting_net["dim_descrpt"] = descriptor.get_dim_out()
grad_force = "direct" not in fitting_net["type"]
if not grad_force:
fitting_net["out_dim"] = descriptor.get_dim_emb()
if "ener" in fitting_net["type"]:
fitting_net["return_energy"] = True
fitting = BaseFitting(**fitting_net)
list_of_models.append(
DPAtomicModel(descriptor, fitting, type_map=model_params["type_map"])
)
Expand Down Expand Up @@ -167,24 +174,7 @@
def get_zbl_model(model_params):
model_params = copy.deepcopy(model_params)
ntypes = len(model_params["type_map"])
# descriptor
model_params["descriptor"]["ntypes"] = ntypes
model_params["descriptor"]["type_map"] = copy.deepcopy(model_params["type_map"])
descriptor = BaseDescriptor(**model_params["descriptor"])
# fitting
fitting_net = model_params.get("fitting_net", None)
fitting_net["type"] = fitting_net.get("type", "ener")
fitting_net["ntypes"] = descriptor.get_ntypes()
fitting_net["type_map"] = copy.deepcopy(model_params["type_map"])
fitting_net["mixed_types"] = descriptor.mixed_types()
fitting_net["embedding_width"] = descriptor.get_dim_out()
fitting_net["dim_descrpt"] = descriptor.get_dim_out()
grad_force = "direct" not in fitting_net["type"]
if not grad_force:
fitting_net["out_dim"] = descriptor.get_dim_emb()
if "ener" in fitting_net["type"]:
fitting_net["return_energy"] = True
fitting = BaseFitting(**fitting_net)
descriptor, fitting, _ = _get_standard_model_components(model_params, ntypes)
dp_model = DPAtomicModel(descriptor, fitting, type_map=model_params["type_map"])
# pairtab
filepath = model_params["use_srtab"]
Expand Down Expand Up @@ -245,45 +235,26 @@
def get_standard_model(model_params):
model_params_old = model_params
model_params = copy.deepcopy(model_params)
ntypes = len(model_params["type_map"])
# descriptor
model_params["descriptor"]["ntypes"] = ntypes
model_params["descriptor"]["type_map"] = copy.deepcopy(model_params["type_map"])
descriptor = BaseDescriptor(**model_params["descriptor"])
# fitting
fitting_net = model_params.get("fitting_net", {})
fitting_net["type"] = fitting_net.get("type", "ener")
fitting_net["ntypes"] = descriptor.get_ntypes()
fitting_net["type_map"] = copy.deepcopy(model_params["type_map"])
fitting_net["mixed_types"] = descriptor.mixed_types()
if fitting_net["type"] in ["dipole", "polar"]:
fitting_net["embedding_width"] = descriptor.get_dim_emb()
fitting_net["dim_descrpt"] = descriptor.get_dim_out()
grad_force = "direct" not in fitting_net["type"]
if not grad_force:
fitting_net["out_dim"] = descriptor.get_dim_emb()
if "ener" in fitting_net["type"]:
fitting_net["return_energy"] = True
fitting = BaseFitting(**fitting_net)
descriptor, fitting, fitting_net_type = _get_standard_model_components(model_params)
Fixed Show fixed Hide fixed
atom_exclude_types = model_params.get("atom_exclude_types", [])
pair_exclude_types = model_params.get("pair_exclude_types", [])
preset_out_bias = model_params.get("preset_out_bias")
preset_out_bias = _convert_preset_out_bias_to_array(
preset_out_bias, model_params["type_map"]
)

if fitting_net["type"] == "dipole":
if fitting_net_type == "dipole":
modelcls = DipoleModel
elif fitting_net["type"] == "polar":
elif fitting_net_type == "polar":
modelcls = PolarModel
elif fitting_net["type"] == "dos":
elif fitting_net_type == "dos":
modelcls = DOSModel
elif fitting_net["type"] in ["ener", "direct_force_ener"]:
elif fitting_net_type in ["ener", "direct_force_ener"]:
modelcls = EnergyModel
elif fitting_net["type"] == "property":
elif fitting_net_type == "property":
modelcls = PropertyModel
else:
raise RuntimeError(f"Unknown fitting type: {fitting_net['type']}")
raise RuntimeError(f"Unknown fitting type: {fitting_net_type}")
anyangml marked this conversation as resolved.
Show resolved Hide resolved

model = modelcls(
descriptor=descriptor,
Expand Down
Loading