Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[python] parse input only when new requests are received #2155

Merged
merged 1 commit into from
Jul 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion engines/python/setup/djl_python/huggingface.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,7 +226,7 @@ def inference(self, inputs: Input) -> Output:
**self.input_format_args)
requests = parsed_input.requests
errors = parsed_input.errors
if len(requests) == 0:
if errors and len(parsed_input.batch) == len(errors):
for i in range(len(parsed_input.batch)):
err = errors.get(i)
if is_rolling_batch_enabled(self.hf_configs.rolling_batch):
Expand Down
21 changes: 20 additions & 1 deletion engines/python/setup/djl_python/input_parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,23 @@ class ParsedInput:
batch: List = field(default_factory=lambda: [])


def get_batch_start_id(batch, **kwargs):
if kwargs.get("is_rolling_batch"):
# for rolling batch, we only need to parse the new requests, as the active requests kept in cache.
rolling_batch = kwargs.get("rolling_batch")
active_requests_len = len(rolling_batch.active_requests)
batch_size = len(batch)
if batch_size > active_requests_len:
# if batch_size > active_requests_len, then new requests are received
return active_requests_len
else:
# no new requests are received, so sending batch_size, nothing will be parsed.
return batch_size
else:
# for non-rolling batch, python process only receives new requests.
return 0


def parse_input_with_formatter(inputs: Input, **kwargs) -> ParsedInput:
"""
Preprocessing function that extracts information from Input objects.
Expand All @@ -44,7 +61,9 @@ def parse_input_with_formatter(inputs: Input, **kwargs) -> ParsedInput:
kwargs["is_rolling_batch"] = is_rolling_batch_enabled(
kwargs.get("configs").rolling_batch)
request_id_counter = get_req_id_counter(kwargs)
for i, input_item in enumerate(batch):
start_batch_id = get_batch_start_id(batch, **kwargs)
for i in range(start_batch_id, len(batch)):
input_item = batch[i]
try:
request_id = request_id_counter.next_id(
) if request_id_counter else i
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -143,22 +143,23 @@ def translate_lmi_dist_params(self, parameters: dict):
return parameters

@stop_on_any_exception
def inference(self, requests: List[Request]) -> List:
def inference(self, new_requests: List[Request]) -> List:
"""
Adds new requests and gets output tokens from the backend.
:param requests: List of requests
:param new_requests: List of requests
:return results: List of dictionaries, one for each request, that contain output tokens and other data.
"""
new_requests = self.get_new_requests(requests)
self.add_new_requests(new_requests)
# step 0: register new requests to engine
for request in new_requests:
request_id = str(request.id)
params = self.translate_lmi_dist_params(request.parameters)
request_params = RequestParams(**params)
lora_request_params = get_lora_request_params(
request, self.lora_ids)
# Constructing Request in lmi-dist library
lmi_dist_request = Request(
id=request_id,
prompt=request.input_text,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -98,17 +98,17 @@ def append_speculated_generations(self, generation, request, req_ids):
speculated_generation = generation.speculated_generations.dequeue()

@stop_on_any_exception
def inference(self, requests: List[Request]) -> list:
def inference(self, new_requests: List[Request]) -> list:
"""
Loads new requests and gets output tokens from all currently active requests from
the Neuron backend.
:param requests: List[Request] List of requests
:param new_requests: List[Request] List of requests
:return: generated batch decoded tokens - list of dictionaries, one for
each request, that contain output tokens and other data.
"""
new_requests = self.get_new_requests(requests)
self.add_new_requests(new_requests)
if len(new_requests) > 0:
generations = self.scheduler.prefill(new_requests)
else:
Expand Down
15 changes: 4 additions & 11 deletions engines/python/setup/djl_python/rolling_batch/rolling_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,30 +93,23 @@ def get_tokenizer(self):
raise RuntimeError("get_tokenizer function not supported")

@abstractmethod
def inference(self, requests: List[Request]) -> List:
def inference(self, new_requests: List[Request]) -> List:
"""
Performs prefill and decode operations for the batch.
:param requests: List[Request] List of requests
:param new_requests: List[Request] List of requests
:return: generated batch decoded tokens
"""
pass

def get_new_requests(self, requests: List[Request]) -> List[Request]:
def add_new_requests(self, requests: List[Request]):
"""
Adds requests to the batch when there is availability
:param requests: List[Request] List of requests
:return: list of current active requests (including those that have just been added)
"""
total_req_len = len(self.active_requests)
batch_size = len(requests)
if batch_size > total_req_len:
for i in range(total_req_len, batch_size):
self.active_requests.append(requests[i])
return self.active_requests[total_req_len:]
self.active_requests.extend(requests)

@abstractmethod
def preprocess_requests(self, requests: List[Request]):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -69,14 +69,14 @@ def __init__(self, model_id_or_path: str, properties: dict,
self._init_scheduler()

@stop_on_any_exception
def inference(self, requests: List) -> List:
def inference(self, new_requests: List) -> List:
"""
Performs prefill and decode operations for the batch.
:param requests: List[Request] List of requests
:param new_requests: List[Request] List of requests
:return: generated batch decoded tokens
"""
new_requests = self.get_new_requests(requests)
self.add_new_requests(new_requests)

preprocessed_new_requests = self.preprocess_requests(new_requests)
self._prefill_and_decode(preprocessed_new_requests)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -87,20 +87,20 @@ def translate_triton_params(self, parameters: dict) -> dict:
return parameters

@stop_on_any_exception
def inference(self, requests: List[Request]) -> List:
def inference(self, new_requests: List[Request]) -> List:
"""
Loads new requests into the batch when there is availability, and gets output tokens from the backend
asynchronously.
:param requests: List[Request] List of requests
:param new_requests: List[Request] List of requests
:param input_data: List of input prompts.
:param parameters: List of settings pertaining to each request.
:param adapters: List of adapters inputs for each request in a batch
:return results: List of dictionaries, one for each request, that contain output tokens and other data.
"""
# add pending requests to active requests list
new_requests = self.get_new_requests(requests)
self.add_new_requests(new_requests)
# step 0: register new active requests
for request in new_requests:
param = self.translate_triton_params(request.parameters)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -107,15 +107,15 @@ def translate_vllm_params(self, parameters: dict) -> dict:
return parameters

@stop_on_any_exception
def inference(self, requests: List[Request]) -> List:
def inference(self, new_requests: List[Request]) -> List:
"""
Adds new requests and gets output tokens from the backend.
:param requests: List[Request] List of requests
:param new_requests: List[Request] List of requests
:return results: List of dictionaries, one for each request, that contain output tokens and other data.
"""
new_requests = self.get_new_requests(requests)
self.add_new_requests(new_requests)
# step 0: register new requests to engine
for request in new_requests:
request_id = random_uuid()
Expand Down
3 changes: 2 additions & 1 deletion engines/python/setup/djl_python/tensorrt_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,8 @@ def inference(self, inputs: Input) -> Output:

parsed_input = parse_input_with_formatter(inputs,
**self.input_format_args)
if len(parsed_input.requests) == 0:
if parsed_input.errors and len(parsed_input.requests) == len(
parsed_input.errors):
for i in range(len(parsed_input.batch)):
err = parsed_input.errors.get(i)
err = {"data": "", "last": True, "code": 424, "error": err}
Expand Down
3 changes: 2 additions & 1 deletion engines/python/setup/djl_python/tensorrt_llm_python.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,8 @@ def inference(self, inputs: Input) -> Output:

parsed_input = parse_input_with_formatter(inputs,
**self.input_format_args)
if len(parsed_input.requests) == 0:
if parsed_input.errors and len(parsed_input.requests) == len(
parsed_input.errors):
for i in range(len(parsed_input.batch)):
err = parsed_input.errors.get(i)
outputs.add(err, key="data", batch_index=i)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,8 +65,8 @@ def reset(self):

@profile_objects
@stop_on_any_exception
def inference(self, requests: List[Request]) -> List:
new_requests = self.get_new_requests(requests)
def inference(self, new_requests: List[Request]) -> List:
self.add_new_requests(new_requests)

for new_request in new_requests:
max_len = new_request.parameters[
Expand Down Expand Up @@ -118,10 +118,10 @@ def reset(self):

@profile_objects
@stop_on_any_exception
def inference(self, requests: List[Request]):
def inference(self, new_requests: List[Request]):

if self.dead_counter.get_id() < self.dead_trigger:
self.dead_counter.next_id()
return super().inference(requests)
return super().inference(new_requests)
else:
raise RuntimeError("Death trigger triggered...")
Loading