-
Notifications
You must be signed in to change notification settings - Fork 27
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add support for additional market data bar types #61
Changes from 1 commit
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
# API_PORT = 4001 | ||
# API_PORT = 7496 | ||
|
||
# API_PORT = 4002 | ||
API_PORT = 7497 | ||
|
||
import deephaven_ib as dhib | ||
|
||
read_only_api = False if API_PORT is 7497 or API_PORT is 4002 else True | ||
|
||
client = dhib.IbSessionTws(host="host.docker.internal", port=API_PORT, read_only=read_only_api) | ||
client.connect() | ||
|
||
if client.is_connected(): | ||
print('Client connected!') | ||
else: | ||
raise RuntimeError("Client not connected!") | ||
|
||
|
||
def check_table_size(dh_table, table_name, expected_size=1): | ||
table_size = dh_table.size | ||
if (table_size < expected_size): | ||
raise RuntimeError( | ||
'Table "' + table_name + '" has ' + str(table_size) + ' rows! (Expected ' + str(expected_size) + '.)') | ||
else: | ||
print('Found ' + str(table_size) + ' rows in table "' + table_name + '".') | ||
|
||
|
||
# Get the Deephaven table of position updates, and use 'last_by' to find the | ||
# current positions (i.e. last row for each ContractId): | ||
positions = client.tables['accounts_positions'].last_by(['ContractId']) | ||
|
||
positions.j_table.awaitUpdate() | ||
|
||
check_table_size(positions, "pos") | ||
|
||
########## | ||
########## | ||
########## | ||
|
||
import numpy as np | ||
from deephaven.pandas import to_pandas | ||
|
||
# Get a DH table containing only the distinct Symbols: | ||
pos_syms = positions.select_distinct(['Symbol']) | ||
mkt_data_syms_set = set(to_pandas(pos_syms)['Symbol'].values) | ||
print('Found ' + str(len(mkt_data_syms_set)) + ' position symbols: ' + str(mkt_data_syms_set)) | ||
|
||
# Add SPY to the set of symbols to request data for: | ||
mkt_data_syms_set.add('SPY') | ||
|
||
from ibapi.contract import Contract | ||
|
||
c = Contract() | ||
c.secType = 'STK' | ||
c.exchange = 'SMART' | ||
c.currency = 'USD' | ||
|
||
c.symbol = None | ||
for sym in mkt_data_syms_set: | ||
print('Requesting data for symbol=' + str(sym)) | ||
c.symbol = sym | ||
|
||
rc = client.get_registered_contract(c) | ||
client.request_bars_historical( | ||
rc, | ||
duration=dhib.Duration.days(253), | ||
bar_size=dhib.BarSize.DAY_1, | ||
bar_type=dhib.BarDataType.ADJUSTED_LAST, | ||
keep_up_to_date=False | ||
) | ||
|
||
# Retrieve the Deephaven table of historical data bars: | ||
hist_data_bars = client.tables['bars_historical'] | ||
|
||
# Wait for data to be retrieved: | ||
from time import sleep | ||
|
||
sleep(5) | ||
|
||
hist_data_bars.j_table.awaitUpdate() | ||
hist_data_recvd_syms = hist_data_bars.select_distinct(['Symbol']) | ||
check_table_size(hist_data_recvd_syms, 'hist_data_recvd_syms', len(mkt_data_syms_set)) | ||
|
||
########## | ||
########## | ||
########## | ||
|
||
# Use 'colname_[i-1]' to read a value from the previous row | ||
hist_data_with_return = hist_data_bars \ | ||
.update_view(formulas=[ | ||
'SameTickerAsPrevRow = Symbol=Symbol_[i-1]', | ||
'Last = !SameTickerAsPrevRow ? null : Close_[i-1]', | ||
'Chg = Close - Last', | ||
'Return = Chg/Last', | ||
]) | ||
|
||
# Join the SPY returns onto the returns for all stocks | ||
spy = hist_data_with_return.where("Symbol=`SPY`") | ||
hist_data_with_spy = hist_data_with_return.natural_join(spy, ['Timestamp'], ['SPY_Return=Return']) | ||
|
||
########## | ||
########## | ||
########## | ||
|
||
|
||
# Install sklearn and run a linear regression to calculate betas | ||
print("Installing sklearn...") | ||
import os | ||
|
||
os.system("pip install sklearn") | ||
from sklearn.linear_model import LinearRegression | ||
|
||
## Use a DynamicTableWriter to store regression results in a Deephaven table | ||
import deephaven.dtypes as dht | ||
from deephaven import DynamicTableWriter | ||
from deephaven.table import Table | ||
|
||
table_writer = DynamicTableWriter( | ||
{"Symbol": dht.string, | ||
"Beta": dht.double, | ||
"Intercept": dht.double, | ||
"R2": dht.double | ||
} | ||
) | ||
regression_results = table_writer.table | ||
|
||
# Partition the table, creating a distinct table for each Symbol: | ||
data_partitioned = hist_data_with_spy.partition_by(['Symbol']) | ||
|
||
print('Calculating betas...') | ||
for symbol in mkt_data_syms_set: | ||
print('Calculating beta for ' + symbol + '...') | ||
returns_for_betas = data_partitioned.get_constituent(symbol) \ | ||
.where(['!isNull(Return)', '!isNull(SPY_Return)']) | ||
|
||
returns_for_betas_df = to_pandas(returns_for_betas) | ||
|
||
reg = LinearRegression() | ||
X = returns_for_betas_df['SPY_Return'].values.reshape(-1, 1) | ||
Y = returns_for_betas_df['Return'] | ||
reg.fit(X, Y) | ||
r2 = reg.score(X, Y).real | ||
|
||
print(symbol + ' coef: ' + str(reg.coef_) + | ||
'; intercept: ' + str(reg.intercept_) + | ||
'; R2: ', str(r2)) | ||
|
||
# Append to the 'regression_results' table: | ||
table_writer.write_row( | ||
symbol, | ||
reg.coef_[0], | ||
reg.intercept_, | ||
r2 | ||
) | ||
print('Finished calculating betas!') | ||
|
||
########## | ||
########## | ||
########## | ||
|
||
|
||
# Request live prices: | ||
ticks_price = client.tables['ticks_price'] | ||
live_prices = ticks_price.last_by(['ContractId']) | ||
|
||
for sym in mkt_data_syms_set: | ||
print('Requesting data for symbol=' + str(sym)) | ||
c.symbol = sym | ||
rc = client.get_registered_contract(c) | ||
client.request_market_data( | ||
rc, | ||
snapshot=False | ||
) | ||
|
||
sleep(2) | ||
live_prices.j_table.awaitUpdate() | ||
check_table_size(live_prices, 'live_prices', len(mkt_data_syms_set)) | ||
|
||
########## | ||
########## | ||
########## | ||
|
||
# Join the table of betas onto the positions | ||
pos_with_beta = positions.natural_join(live_prices, ['ContractId'], ['Price']) \ | ||
.natural_join(regression_results, ['Symbol'], ['Beta', 'R2']) \ | ||
.view([ | ||
'Symbol', | ||
'ContractId', | ||
'SecType', | ||
'Currency', | ||
'Position', | ||
'PosValue = Position * Price', | ||
'Price', | ||
'AvgCost', | ||
'PNL = PosValue - AvgCost * Position', | ||
'Beta', | ||
'R2', | ||
'SPYBetaValue = Beta * PosValue', | ||
]) | ||
|
||
########## | ||
########## | ||
########## | ||
|
||
# Calculate hedge, excluding positions with a very low R2: | ||
hedge_shares = pos_with_beta \ | ||
.view([ | ||
'PosValue', | ||
'WeightedBeta = Beta * PosValue', | ||
'SPYBetaValue', | ||
'SPYBetaValueForHedge = R2 > 1/5 ? SPYBetaValue : 0' | ||
]) \ | ||
.sum_by() \ | ||
.natural_join(live_prices.where('Symbol=`SPY`'), [], ['SPY_Price=Price']) \ | ||
.view([ | ||
'PortfolioValue = PosValue', | ||
'PortfolioBeta = WeightedBeta / PosValue', | ||
'SPYBetaValue', | ||
'SPYBetaValueForHedge', | ||
'HedgeShares = -round(SPYBetaValueForHedge / SPY_Price)', | ||
'HedgeCost = HedgeShares * SPY_Price', | ||
'SPY_Price' | ||
]) | ||
|
||
########## | ||
########## | ||
########## | ||
|
||
# Set send_hedge_order to True to submit the order, not just generate it. | ||
# (Must also set read_only to False when creating the IbSessionTws instance.) | ||
send_hedge_order = False | ||
|
||
from ibapi.order import Order | ||
|
||
c.symbol = "SPY" | ||
rc = client.get_registered_contract(c) | ||
print(c) | ||
|
||
hedge_info = hedge_shares.j_table.getRecord(0, 'HedgeShares', 'SPY_Price') | ||
hedge_qty = hedge_info[0] | ||
|
||
hedge_last_px = hedge_info[1] | ||
hedge_side = "BUY" if hedge_qty > 0 else "SELL" | ||
hedge_limit_px = hedge_last_px + 0.05 * (1 if hedge_side is "BUY" else -1) | ||
|
||
order = Order() | ||
# order.account = "<account number>" | ||
order.action = hedge_side | ||
order.orderType = "LIMIT" | ||
order.totalQuantity = hedge_qty | ||
order.lmtPrice = hedge_limit_px | ||
order.eTradeOnly = False | ||
order.firmQuoteOnly = False | ||
|
||
print('Order: ' + str(order)) | ||
|
||
if send_hedge_order: | ||
print('***** Sending order to ' + order.action + ' ' + str( | ||
order.totalQuantity) + ' shares of ' + c.symbol + '! *****') | ||
req = client.order_place(rc, order) | ||
|
||
else: | ||
print('Not actually sending order.') | ||
|
||
# To cancel orders: | ||
# req.cancel() | ||
# client.order_cancel_all() |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -132,14 +132,24 @@ class BarDataType(Enum): | |
"""Ask prices.""" | ||
BID_ASK = 5 | ||
"""Bid/Ask prices.""" | ||
HISTORICAL_VOLATILITY = 6 | ||
ADJUSTED_LAST = 6 | ||
"""Bid/Ask prices.""" | ||
HISTORICAL_VOLATILITY = 7 | ||
"""Historical volatility.""" | ||
OPTION_IMPLIED_VOLATILITY = 7 | ||
OPTION_IMPLIED_VOLATILITY = 8 | ||
"""Option implied volatility.""" | ||
FEE_RATE = 8 | ||
"""Fee rate.""" | ||
REBATE_RATE = 9 | ||
"""Rebate rate.""" | ||
FEE_RATE = 10 | ||
"""Fee rate.""" | ||
YIELD_BID = 11 | ||
"""Bid yield.""" | ||
YIELD_ASK = 12 | ||
"""Ask yield.""" | ||
YIELD_BID_ASK = 13 | ||
"""Bid/Ask yield.""" | ||
YIELD_LAST = 14 | ||
"""Last yield.""" | ||
Comment on lines
-135
to
+152
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Do any of these need to go in the exclusion list in There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Don't believe so — think that only the existing ones (TRADES/MIDPOINT/BID/ASK) are supported |
||
|
||
|
||
class BarSize(Enum): | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
clean this up. Do we need all of these commented out?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Updated the comment to clarify these — can still remove them if you'd prefer