Related projects:
- Python 2.7 (e.g., python-dev package for Ubuntu or this for CentOS)
- virtualenv
- libcouchbase
Optional:
- AMQP broker (RabbitMQ is recommended) for distributed workloads
Python dependencies are listed in requirements.txt. make
creates virtual environment (Python sandbox) and installs those packages.
SUT dependencies:
- numactl
- iostat
Before using perfrunner you should install the requirements listed in the requirements section. At a minimum you need Python 2.7, virtualenv, and libcouchbase.
First clone the perfrunner repo with the command below.
git clone https://github.com/couchbaselabs/perfrunner.git
Once inside the perfrunner directory create a virtual environment for all of the perfrunner dependencies and activate the virtual environment.
cd perfrunner
virtualenv -p /usr/bin/python env
source env/bin/activate
Now you need to install all of the dependencies so that you can run perfrunner.
pip install -r requirements.txt --global-option="build_ext" --global-option="--include-dirs=/usr/local/include" --global-option="--library-dirs=/usr/local/lib"
You are now ready to use perfrunner. Once you are done running tests remember to deactivate the virtual environment by running the following command.
deactivate
./env/bin/python -m perfrunner.utils.install -c ${cluster} -v ${version} -t ${toy}
./env/bin/python -m perfrunner.utils.cluster -c ${cluster} -t ${test_config}
For instance:
./env/bin/python -m perfrunner.utils.install -c clusters/vesta.spec -v 2.0.0-1976
./env/bin/python -m perfrunner.utils.install -c clusters/vesta.spec -v 2.1.1-PRF03 -t couchstore
./env/bin/python -m perfrunner.utils.cluster -c clusters/vesta.spec -t tests/comp_bucket_20M.test
./env/bin/python -m perfrunner -c ${cluster} -t ${test_config}
For instance:
./env/bin/python -m perfrunner -c clusters/vesta.spec -t tests/comp_bucket_20M.test
Overriding test config options (comma-separated section.option.value trios):
./env/bin/python -m perfrunner -c clusters/vesta.spec -t tests/comp_bucket_20M.test \
load.size.512,cluster.initial_nodes.3 4
Note that if any part of the trio inclues commas, then the whole trio
needs to be quoted with doublequotes - for example to set the cluster.jemalloc
option to
the value foo:1,bar:2
:
./env/bin/python -m perfrunner -c clusters/foo.spec -t tests/bar.test \
load.size.512,"cluster.jemalloc.foo:1,bar:2"
--verbose
flag enables Fabric logging.
--nodebug
flag disables debug phase (e.g., execution of cbcollect_info).
With --local
flag localhost will be used as a workload generator.
./env/bin/python -m perfrunner.tests.functional -c ${cluster} -t ${test_config}
For instance:
./env/bin/python -m perfrunner.tests.functional -c clusters/atlas.spec -t tests/functional.test
After nose
installation:
make test
cbmonitor provides handy APIs for experiments when we need to track metric while varying one or more input parameters. For instance, we want to analyze how GET latency depends on number of front-end memcached threads.
First of all, we create experiment config like this one:
{
"name": "95th percentile GET latency (ms), variable memcached threads",
"defaults": {
"memcached threads": 4
}
}
Query for memcached threads
variable must be defined in experiment helper:
'memcached threads': 'self.tc.cluster.num_cpus'
There must be corrensponding test config which measures GET latency. Most importantly test case should post experimental results:
if hasattr(self, 'experiment'):
self.experiment.post_results(latency_get)
Finally we can execute scripts/workload_exp.sh which has -e
flag.
Now we can check cbmonitor UI and analyze results.