Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add more tests for the dataframe interchange protocol #75

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions protocol/tests/conftest.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
import pytest
import pandas as pd


@pytest.fixture(scope="package")
def df_from_dict():
def maker(dct, is_categorical=False):
df = pd.DataFrame(dct)
return df.astype("category") if is_categorical else df

return maker
147 changes: 147 additions & 0 deletions protocol/tests/test_protocol.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import pytest
import math
import ctypes


@pytest.mark.parametrize(
"test_data",
[
{"a": ["foo", "bar"], "b": ["baz", "qux"]},
{"a": [1.5, 2.5, 3.5], "b": [9.2, 10.5, 11.8]},
{"A": [1, 2, 3, 4], "B": [1, 2, 3, 4]},
],
ids=["str_data", "float_data", "int_data"],
)
def test_only_one_dtype(test_data, df_from_dict):
columns = list(test_data.keys())
df = df_from_dict(test_data)
dfX = df.__dataframe__()

column_size = len(test_data[columns[0]])
for column in columns:
assert dfX.get_column_by_name(column).null_count == 0
assert dfX.get_column_by_name(column).size == column_size
assert dfX.get_column_by_name(column).offset == 0


def test_float_int(df_from_dict):
df = df_from_dict(
{
"a": [1, 2, 3],
"b": [3, 4, 5],
"c": [1.5, 2.5, 3.5],
"d": [9, 10, 11],
"e": [True, False, True],
"f": ["a", "", "c"],
}
)
dfX = df.__dataframe__()
columns = [INT, INT, FLOAT, INT, BOOL, STRING]
rgommers marked this conversation as resolved.
Show resolved Hide resolved

for column, kind in columns.items():
colX = dfX.get_column_by_name(column)
assert colX.null_count == 0
assert colX.size == 3
assert colX.offset == 0

assert colX.dtype[0] == kind


def test_na_float(df_from_dict):
df = df_from_dict({"a": [1.0, math.nan, 2.0]})
dfX = df.__dataframe__()
colX = dfX.get_column_by_name("a")
assert colX.null_count == 1


def test_noncategorical(df_from_dict):
df = df_from_dict({"a": [1, 2, 3]})
dfX = df.__dataframe__()
colX = dfX.get_column_by_name("a")
with pytest.raises(TypeError):
colX.describe_categorical


def test_categorical(df_from_dict):
df = df_from_dict(
{"weekday": ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", "Sat", "Sun"]},
is_categorical=True,
)

colX = df.__dataframe__().get_column_by_name("weekday")
is_ordered, is_dictionary, _ = colX.describe_categorical
assert isinstance(is_ordered, bool)
assert isinstance(is_dictionary, bool)


def test_dataframe(df_from_dict):
df = df_from_dict(
{"x": [True, True, False], "y": [1, 2, 0], "z": [9.2, 10.5, 11.8]}
)
dfX = df.__dataframe__()

assert dfX.num_columns() == 3
assert dfX.num_rows() == 3
assert dfX.num_chunks() == 1
assert list(dfX.column_names()) == ["x", "y", "z"]
assert (
list(dfX.select_columns((0, 2)).column_names())
== list(dfX.select_columns_by_name(("x", "z")).column_names())
)


@pytest.mark.parametrize(["size", "n_chunks"], [(10, 3), (12, 3), (12, 5)])
def test_df_get_chunks(size, n_chunks, df_from_dict):
df = df_from_dict({"x": list(range(size))})
dfX = df.__dataframe__()
chunks = list(dfX.get_chunks(n_chunks))
assert len(chunks) == n_chunks
assert sum(chunk.num_rows() for chunk in chunks) == size


@pytest.mark.parametrize(["size", "n_chunks"], [(10, 3), (12, 3), (12, 5)])
def test_column_get_chunks(size, n_chunks, df_from_dict):
df = df_from_dict({"x": list(range(size))})
dfX = df.__dataframe__()
chunks = list(dfX.get_column(0).get_chunks(n_chunks))
assert len(chunks) == n_chunks
assert sum(chunk.size for chunk in chunks) == size


def test_get_columns(df_from_dict):
df = df_from_dict({"a": [0, 1], "b": [2.5, 3.5]})
dfX = df.__dataframe__()
for colX in dfX.get_columns():
assert colX.size == 2
assert colX.num_chunks() == 1
assert dfX.get_column(0).dtype[0] == INT
assert dfX.get_column(1).dtype[0] == FLOAT


def test_buffer(df_from_dict):
arr = [0, 1, -1]
df = df_from_dict({"a": arr})
dfX = df.__dataframe__()
colX = dfX.get_column(0)
bufX = colX.get_buffers()

dataBuf, dataDtype = bufX["data"]

assert dataBuf.bufsize > 0
assert dataBuf.ptr != 0
device, _ = dataBuf.__dlpack_device__

assert dataDtype[0] == 0

if device == 1: # CPU-only as we're going to directly read memory here
bitwidth = dataDtype[1]
ctype = {
8: ctypes.c_int8,
16: ctypes.c_int16,
32: ctypes.c_int32,
64: ctypes.c_int64,
}[bitwidth]

for idx, truth in enumerate(arr):
val = ctype.from_address(dataBuf.ptr + idx * (bitwidth // 8)).value
assert val == truth, f"Buffer at index {idx} mismatch"