Skip to content

Commit

Permalink
added in label visualization to auto annotation runner
Browse files Browse the repository at this point in the history
  • Loading branch information
benhoff committed Dec 16, 2019
1 parent b5eacc4 commit 9aad85e
Show file tree
Hide file tree
Showing 3 changed files with 67 additions and 27 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ https://github.com/opencv/cvat/issues/750).
- Datumaro is an experimental framework to build, analyze, debug and visualize datasets for DL algorithms
- Text Detection Auto Annoation Script in OpenVINO format for version 4
- Added in OpenVINO Semantic Segmentation for roads
- Ability to visualize labels when using Auto Annotation runner

### Changed
- page_size parameter for all REST API methods
Expand Down
13 changes: 13 additions & 0 deletions utils/auto_annotation/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,21 @@ $ python cvat/utils/auto_annotation/run_model.py --py /path/to/python/interp.py
--show-images
```

If you'd like to see the labels printed on the image, use the `--show-labels` flag

```shell
$ python cvat/utils/auto_annotation/run_model.py --py /path/to/python/interp.py \
--xml /path/to/xml/file.xml \
--bin /path/to/bin/file.bin \
--json /path/to/json/mapping/mapping.json \
--image-files /path/to/img.jpg /path2/to/img2.png /path/to/img3.jpg \
--show-images \
--show-labels
```

There's a command that let's you scan quickly by setting the length of time (in milliseconds) to display each image.
Use the `--show-image-delay` flag and set the appropriate time.
In this example, 2000 milliseconds is 2 seconds for each image.

```shell
# Display each image in a window for 2 seconds
Expand Down
80 changes: 53 additions & 27 deletions utils/auto_annotation/run_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ def _get_kwargs():
parser.add_argument('--show-images', action='store_true', help='Show the results of the annotation in a window')
parser.add_argument('--show-image-delay', default=0, type=int, help='Displays the images for a set duration in milliseconds, default is until a key is pressed')
parser.add_argument('--serialize', default=False, action='store_true', help='Try to serialize the result')
parser.add_argument('--show-labels', action='store_true', help='Show the labels on the window')

return vars(parser.parse_args())

Expand All @@ -45,6 +46,16 @@ def pairwise(iterable):
result.append((iterable[i], iterable[i+1]))
return np.array(result, dtype=np.int32)

def find_min_y(array):
min_ = sys.maxsize
index = None
for i, pair in enumerate(array):
if pair[1] < min_:
min_ = pair[1]
index = i

return array[index]


def main():
kwargs = _get_kwargs()
Expand Down Expand Up @@ -104,34 +115,8 @@ def main():
py_file,
restricted=restricted)

if kwargs['serialize']:
os.environ['DJANGO_SETTINGS_MODULE'] = 'cvat.settings.production'
import django
django.setup()

from cvat.apps.engine.serializers import LabeledDataSerializer

# NOTE: We're actually using `run_inference_engine_annotation`
# incorrectly here. The `mapping` dict is supposed to be a mapping
# of integers -> integers and represents the transition from model
# integers to the labels in the database. We're using a mapping of
# integers -> strings. For testing purposes, this shortcut is fine.
# We just want to make sure everything works. Until, that is....
# we want to test using the label serializer. Then we have to transition
# back to integers, otherwise the serializer complains about have a string
# where an integer is expected. We'll just brute force that.

for shape in results['shapes']:
# Change the english label to an integer for serialization validation
shape['label_id'] = 1

serializer = LabeledDataSerializer(data=results)

if not serializer.is_valid():
logging.critical('Data unable to be serialized correctly!')
serializer.is_valid(raise_exception=True)

logging.warning('Program didn\'t have any errors.')
logging.warning('Inference didn\'t have any errors.')
show_images = kwargs.get('show_images', False)

if show_images:
Expand All @@ -146,23 +131,64 @@ def main():
return

show_image_delay = kwargs['show_image_delay']
show_labels = kwargs.get('show_labels')

for index, data in enumerate(image_data):
for detection in results['shapes']:
if not detection['frame'] == index:
continue
points = detection['points']
label_str = detection['label_id']

# Cv2 doesn't like floats for drawing
points = [int(p) for p in points]
color = random_color()

if detection['type'] == 'rectangle':
cv2.rectangle(data, (points[0], points[1]), (points[2], points[3]), color, 3)

if show_labels:
cv2.putText(data, label_str, (points[0], points[1] - 7), cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)

elif detection['type'] in ('polygon', 'polyline'):
# polylines is picky about datatypes
points = pairwise(points)
cv2.polylines(data, [points], 1, color)

if show_labels:
min_point = find_min_y(points)
cv2.putText(data, label_str, (min_point[0], min_point[1] - 7), cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)

cv2.imshow(str(index), data)
cv2.waitKey(show_image_delay)
cv2.destroyWindow(str(index))

if kwargs['serialize']:
os.environ['DJANGO_SETTINGS_MODULE'] = 'cvat.settings.production'
import django
django.setup()

from cvat.apps.engine.serializers import LabeledDataSerializer

# NOTE: We're actually using `run_inference_engine_annotation`
# incorrectly here. The `mapping` dict is supposed to be a mapping
# of integers -> integers and represents the transition from model
# integers to the labels in the database. We're using a mapping of
# integers -> strings. For testing purposes, this shortcut is fine.
# We just want to make sure everything works. Until, that is....
# we want to test using the label serializer. Then we have to transition
# back to integers, otherwise the serializer complains about have a string
# where an integer is expected. We'll just brute force that.

for shape in results['shapes']:
# Change the english label to an integer for serialization validation
shape['label_id'] = 1

serializer = LabeledDataSerializer(data=results)

if not serializer.is_valid():
logging.critical('Data unable to be serialized correctly!')
serializer.is_valid(raise_exception=True)

if __name__ == '__main__':
main()

0 comments on commit 9aad85e

Please sign in to comment.