Skip to content

Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining (CVPR 2024)

Notifications You must be signed in to change notification settings

cschenxiang/NeRD-Rain

Repository files navigation

【CVPR'2024🔥】Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining

Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining

Xiang Chen, Jinshan Pan, Jiangxin Dong

Nanjing University of Science and Technology

Primary contact: Xiang Chen (chenxiang@njust.edu.cn)

📣 News

  • [24-04-03] The paper is available here.
  • [24-03-20] The source codes, models and results are available.
  • [24-02-27] Our paper has been accepted to CVPR 2024.

📖 Research Website: [link] (A Survey on Image Deraining)

📌 Overview

avatar

🔑 Setup

Type the command:

pip install -r requirements.txt

Install warmup scheduler

cd pytorch-gradual-warmup-lr; python setup.py install; cd ..

🧩 Dataset Preparation

Datasets Download Link
Rain200L Baidu Netdisk (s2yx)
Rain200H Baidu Netdisk (z9br)
DID-Data Baidu Netdisk (5luo)
DDN-Data Baidu Netdisk (ldzo)
SPA-Data Baidu Netdisk (yjow)

🛠️ Training and Testing

  1. Please download the corresponding datasets and put them in the folder Datasets/.
  2. Follow the instructions below to begin training our model.
bash train.sh

Run the script then you can find the generated experimental logs in the folder checkpoints.

  1. Follow the instructions below to begin testing our model.
python test.py

Run the script then you can find the output visual results in the folder results/.

🤖 Pre-trained Models

Models NeRD-Rain-S NeRD-Rain
Rain200L Google Drive / Baidu Netdisk (thga) Google Drive / Baidu Netdisk (ub1n)
Rain200H Google Drive / Baidu Netdisk (twg1) Google Drive / Baidu Netdisk (x45q)
DID-Data Google Drive / Baidu Netdisk (bljv) Google Drive / Baidu Netdisk (n37f)
DDN-Data Google Drive / Baidu Netdisk (10ut) Google Drive / Baidu Netdisk (01m0)
SPA-Data Google Drive / Baidu Netdisk (p7h9) Google Drive / Baidu Netdisk (mhkn)

🚨 Performance Evaluation

See folder "evaluations"

  1. for Rain200L/H and SPA-Data datasets: PSNR and SSIM results are computed by using this Matlab Code.

  2. for DID-Data and DDN-Data datasets: PSNR and SSIM results are computed by using this Matlab Code.

🚀 Visual Deraining Results

Methods DualGCN SPDNet Uformer Restormer
Rain200L Baidu Netdisk (v8qy) Baidu Netdisk (y39h) Baidu Netdisk (N/A) Baidu Netdisk (6a2z)
Rain200H Baidu Netdisk (jnc9) Baidu Netdisk (mry2) Baidu Netdisk (N/A) Baidu Netdisk (9m1r)
DID-Data Baidu Netdisk (3gdx) Baidu Netdisk (klci) Baidu Netdisk (4uur) Baidu Netdisk (1hql)
DDN-Data Baidu Netdisk (1mdx) Baidu Netdisk (19bm) Baidu Netdisk (39bj) Baidu Netdisk (crj4)
SPA-Data Baidu Netdisk (lkeb) Baidu Netdisk (dd98) Baidu Netdisk (N/A) Baidu Netdisk (b40z)
Methods IDT DRSformer NeRD-Rain-S NeRD-Rain
Rain200L Baidu Netdisk (v4yd) Baidu Netdisk (hyuv) Baidu Netdisk (tur9) Baidu Netdisk (jdir)
Rain200H Baidu Netdisk (77i4) Baidu Netdisk (px2j) Baidu Netdisk (g05m) Baidu Netdisk (2l0w)
DID-Data Baidu Netdisk (8uxx) Baidu Netdisk (t879) Baidu Netdisk (p2h6) Baidu Netdisk (yerc)
DDN-Data Baidu Netdisk (0ey6) Baidu Netdisk (9vtz) Baidu Netdisk (f10x) Baidu Netdisk (6stc)
SPA-Data Baidu Netdisk (b862) Baidu Netdisk (bl4n) Baidu Netdisk (c6ky) Baidu Netdisk (lhyw)

🔎 More Results

Methods Models Descriptions
model_MPRNet.py Google Drive Extension to CNN-based UNet, see Table 6.

👍 Acknowledgement

Thanks for their awesome works (DeepRFT and NeRCo).

📘 Citation

Please consider citing our work as follows if it is helpful.

@InProceedings{NeRD-Rain,
    author={Chen, Xiang and Pan, Jinshan and Dong, Jiangxin}, 
    title={Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month={June},
    year={2024}
}

About

Bidirectional Multi-Scale Implicit Neural Representations for Image Deraining (CVPR 2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published