This repository has been archived by the owner on Sep 24, 2020. It is now read-only.
forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This is the start of porting PAX_USERCOPY into the mainline kernel. This is the first set of features, controlled by CONFIG_HARDENED_USERCOPY. The work is based on code by PaX Team and Brad Spengler, and an earlier port from Casey Schaufler. Additional non-slab page tests are from Rik van Riel. This patch contains the logic for validating several conditions when performing copy_to_user() and copy_from_user() on the kernel object being copied to/from: - address range doesn't wrap around - address range isn't NULL or zero-allocated (with a non-zero copy size) - if on the slab allocator: - object size must be less than or equal to copy size (when check is implemented in the allocator, which appear in subsequent patches) - otherwise, object must not span page allocations (excepting Reserved and CMA ranges) - if on the stack - object must not extend before/after the current process stack - object must be contained by a valid stack frame (when there is arch/build support for identifying stack frames) - object must not overlap with kernel text Signed-off-by: Kees Cook <keescook@chromium.org> Tested-by: Valdis Kletnieks <valdis.kletnieks@vt.edu> Tested-by: Michael Ellerman <mpe@ellerman.id.au>
- Loading branch information
Showing
5 changed files
with
327 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
/* | ||
* This implements the various checks for CONFIG_HARDENED_USERCOPY*, | ||
* which are designed to protect kernel memory from needless exposure | ||
* and overwrite under many unintended conditions. This code is based | ||
* on PAX_USERCOPY, which is: | ||
* | ||
* Copyright (C) 2001-2016 PaX Team, Bradley Spengler, Open Source | ||
* Security Inc. | ||
* | ||
* This program is free software; you can redistribute it and/or modify | ||
* it under the terms of the GNU General Public License version 2 as | ||
* published by the Free Software Foundation. | ||
* | ||
*/ | ||
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
|
||
#include <linux/mm.h> | ||
#include <linux/slab.h> | ||
#include <asm/sections.h> | ||
|
||
enum { | ||
BAD_STACK = -1, | ||
NOT_STACK = 0, | ||
GOOD_FRAME, | ||
GOOD_STACK, | ||
}; | ||
|
||
/* | ||
* Checks if a given pointer and length is contained by the current | ||
* stack frame (if possible). | ||
* | ||
* Returns: | ||
* NOT_STACK: not at all on the stack | ||
* GOOD_FRAME: fully within a valid stack frame | ||
* GOOD_STACK: fully on the stack (when can't do frame-checking) | ||
* BAD_STACK: error condition (invalid stack position or bad stack frame) | ||
*/ | ||
static noinline int check_stack_object(const void *obj, unsigned long len) | ||
{ | ||
const void * const stack = task_stack_page(current); | ||
const void * const stackend = stack + THREAD_SIZE; | ||
int ret; | ||
|
||
/* Object is not on the stack at all. */ | ||
if (obj + len <= stack || stackend <= obj) | ||
return NOT_STACK; | ||
|
||
/* | ||
* Reject: object partially overlaps the stack (passing the | ||
* the check above means at least one end is within the stack, | ||
* so if this check fails, the other end is outside the stack). | ||
*/ | ||
if (obj < stack || stackend < obj + len) | ||
return BAD_STACK; | ||
|
||
/* Check if object is safely within a valid frame. */ | ||
ret = arch_within_stack_frames(stack, stackend, obj, len); | ||
if (ret) | ||
return ret; | ||
|
||
return GOOD_STACK; | ||
} | ||
|
||
static void report_usercopy(const void *ptr, unsigned long len, | ||
bool to_user, const char *type) | ||
{ | ||
pr_emerg("kernel memory %s attempt detected %s %p (%s) (%lu bytes)\n", | ||
to_user ? "exposure" : "overwrite", | ||
to_user ? "from" : "to", ptr, type ? : "unknown", len); | ||
/* | ||
* For greater effect, it would be nice to do do_group_exit(), | ||
* but BUG() actually hooks all the lock-breaking and per-arch | ||
* Oops code, so that is used here instead. | ||
*/ | ||
BUG(); | ||
} | ||
|
||
/* Returns true if any portion of [ptr,ptr+n) over laps with [low,high). */ | ||
static bool overlaps(const void *ptr, unsigned long n, unsigned long low, | ||
unsigned long high) | ||
{ | ||
unsigned long check_low = (uintptr_t)ptr; | ||
unsigned long check_high = check_low + n; | ||
|
||
/* Does not overlap if entirely above or entirely below. */ | ||
if (check_low >= high || check_high < low) | ||
return false; | ||
|
||
return true; | ||
} | ||
|
||
/* Is this address range in the kernel text area? */ | ||
static inline const char *check_kernel_text_object(const void *ptr, | ||
unsigned long n) | ||
{ | ||
unsigned long textlow = (unsigned long)_stext; | ||
unsigned long texthigh = (unsigned long)_etext; | ||
unsigned long textlow_linear, texthigh_linear; | ||
|
||
if (overlaps(ptr, n, textlow, texthigh)) | ||
return "<kernel text>"; | ||
|
||
/* | ||
* Some architectures have virtual memory mappings with a secondary | ||
* mapping of the kernel text, i.e. there is more than one virtual | ||
* kernel address that points to the kernel image. It is usually | ||
* when there is a separate linear physical memory mapping, in that | ||
* __pa() is not just the reverse of __va(). This can be detected | ||
* and checked: | ||
*/ | ||
textlow_linear = (unsigned long)__va(__pa(textlow)); | ||
/* No different mapping: we're done. */ | ||
if (textlow_linear == textlow) | ||
return NULL; | ||
|
||
/* Check the secondary mapping... */ | ||
texthigh_linear = (unsigned long)__va(__pa(texthigh)); | ||
if (overlaps(ptr, n, textlow_linear, texthigh_linear)) | ||
return "<linear kernel text>"; | ||
|
||
return NULL; | ||
} | ||
|
||
static inline const char *check_bogus_address(const void *ptr, unsigned long n) | ||
{ | ||
/* Reject if object wraps past end of memory. */ | ||
if (ptr + n < ptr) | ||
return "<wrapped address>"; | ||
|
||
/* Reject if NULL or ZERO-allocation. */ | ||
if (ZERO_OR_NULL_PTR(ptr)) | ||
return "<null>"; | ||
|
||
return NULL; | ||
} | ||
|
||
static inline const char *check_heap_object(const void *ptr, unsigned long n, | ||
bool to_user) | ||
{ | ||
struct page *page, *endpage; | ||
const void *end = ptr + n - 1; | ||
bool is_reserved, is_cma; | ||
|
||
/* | ||
* Some architectures (arm64) return true for virt_addr_valid() on | ||
* vmalloced addresses. Work around this by checking for vmalloc | ||
* first. | ||
*/ | ||
if (is_vmalloc_addr(ptr)) | ||
return NULL; | ||
|
||
if (!virt_addr_valid(ptr)) | ||
return NULL; | ||
|
||
page = virt_to_head_page(ptr); | ||
|
||
/* Check slab allocator for flags and size. */ | ||
if (PageSlab(page)) | ||
return __check_heap_object(ptr, n, page); | ||
|
||
/* | ||
* Sometimes the kernel data regions are not marked Reserved (see | ||
* check below). And sometimes [_sdata,_edata) does not cover | ||
* rodata and/or bss, so check each range explicitly. | ||
*/ | ||
|
||
/* Allow reads of kernel rodata region (if not marked as Reserved). */ | ||
if (ptr >= (const void *)__start_rodata && | ||
end <= (const void *)__end_rodata) { | ||
if (!to_user) | ||
return "<rodata>"; | ||
return NULL; | ||
} | ||
|
||
/* Allow kernel data region (if not marked as Reserved). */ | ||
if (ptr >= (const void *)_sdata && end <= (const void *)_edata) | ||
return NULL; | ||
|
||
/* Allow kernel bss region (if not marked as Reserved). */ | ||
if (ptr >= (const void *)__bss_start && | ||
end <= (const void *)__bss_stop) | ||
return NULL; | ||
|
||
/* Is the object wholly within one base page? */ | ||
if (likely(((unsigned long)ptr & (unsigned long)PAGE_MASK) == | ||
((unsigned long)end & (unsigned long)PAGE_MASK))) | ||
return NULL; | ||
|
||
/* Allow if start and end are inside the same compound page. */ | ||
endpage = virt_to_head_page(end); | ||
if (likely(endpage == page)) | ||
return NULL; | ||
|
||
/* | ||
* Reject if range is entirely either Reserved (i.e. special or | ||
* device memory), or CMA. Otherwise, reject since the object spans | ||
* several independently allocated pages. | ||
*/ | ||
is_reserved = PageReserved(page); | ||
is_cma = is_migrate_cma_page(page); | ||
if (!is_reserved && !is_cma) | ||
goto reject; | ||
|
||
for (ptr += PAGE_SIZE; ptr <= end; ptr += PAGE_SIZE) { | ||
page = virt_to_head_page(ptr); | ||
if (is_reserved && !PageReserved(page)) | ||
goto reject; | ||
if (is_cma && !is_migrate_cma_page(page)) | ||
goto reject; | ||
} | ||
|
||
return NULL; | ||
|
||
reject: | ||
return "<spans multiple pages>"; | ||
} | ||
|
||
/* | ||
* Validates that the given object is: | ||
* - not bogus address | ||
* - known-safe heap or stack object | ||
* - not in kernel text | ||
*/ | ||
void __check_object_size(const void *ptr, unsigned long n, bool to_user) | ||
{ | ||
const char *err; | ||
|
||
/* Skip all tests if size is zero. */ | ||
if (!n) | ||
return; | ||
|
||
/* Check for invalid addresses. */ | ||
err = check_bogus_address(ptr, n); | ||
if (err) | ||
goto report; | ||
|
||
/* Check for bad heap object. */ | ||
err = check_heap_object(ptr, n, to_user); | ||
if (err) | ||
goto report; | ||
|
||
/* Check for bad stack object. */ | ||
switch (check_stack_object(ptr, n)) { | ||
case NOT_STACK: | ||
/* Object is not touching the current process stack. */ | ||
break; | ||
case GOOD_FRAME: | ||
case GOOD_STACK: | ||
/* | ||
* Object is either in the correct frame (when it | ||
* is possible to check) or just generally on the | ||
* process stack (when frame checking not available). | ||
*/ | ||
return; | ||
default: | ||
err = "<process stack>"; | ||
goto report; | ||
} | ||
|
||
/* Check for object in kernel to avoid text exposure. */ | ||
err = check_kernel_text_object(ptr, n); | ||
if (!err) | ||
return; | ||
|
||
report: | ||
report_usercopy(ptr, n, to_user, err); | ||
} | ||
EXPORT_SYMBOL(__check_object_size); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters