Check out the following list of datasets
python main.py
.
├── blocks/ # Blocks of Paper
│ ├── compact_pyramid.py # Compact Pyramid Refinement block
│ ├── depthwise_seperable.py # Depthwise Seperable Conv. used in CPR
│ ├── implicit_depth.py # Implicit Depth Restoration
│ ├── mobilenet.py # MobileNetv2
│ ├── modality_fusion.py # Cross-Modality Fusion
│ └── rgb_attention.py # RGB Attention - Eqn. (2)
│
├── checkpoints/ # Saved models during training
│
├── data/ # Datasets
│
├── main.py # Main driver
│
├── model.py # Entire model implem.
│
├── README.md
│
└── utils/
├── dataset.py # pytorch Datasets
├── pytorch_msssim.py # SSIM Loss implem.
├── solver.py # Trainer
└── viz.py # Viz for validation
MobileSal - Implementation of paper as close as possible
MobileSalTranspose - Replaced upscale interpolation with transpose conv layers
Currently has training issues, Dice and BCE loss giving good scores to very bad outputs.
- Vanishing Gradient,
- Checking the gradient, the smallest mean stays in the thousands
- Large model weight values
- Max model weights are 1