Skip to content

cindyfang70/clustREval

Repository files navigation

ClustREval

Description

ClustREval is a package for evaluating the performance of different clustering pipelines on scRNA-seq data using unsupervised metrics and gene set enrichment analysis. Clustering is a powerful tool for helping researchers to detect cellular heterogeniety. However, clustering performance is highly dependent on parameters used in the clustering pipeline, for which there are no systematic recommendations. This package allows users to compute clustering results from various clustering pipelines defined by user-specified parameters. Clustering results can then be evaluated using comparing unsupervised clustering metrics and differential gene expression between results.

R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Installation

To install the latest version of the package:

require("devtools")
devtools::install_github("cindyfang70/clustREval", build_vignettes = TRUE)
library("clustREval")

Overview

ls("package:clustREval")
data(package = "clustREval")

To run the shiny app, run: runClustREval()

browseVignettes("clustREval")

clustREval contains four functions that aid in the evaluation of clustering performance.

The runPipelineCombs function runs all combinations of user-specified clustering pipelines. The user simply has to define the various parameters to use at each step in the pipeline and provide the data to perform clustering on.

The computeUnsupervisedMetrics function computes the Dunn index and mean silhouette width of a clustering output.

The geneSetEval function performs Gene Set Enrichment Analysis (GSEA) on each of the clusters from a clustering output and returns enrichment scores based on the Hallmark Pathways from MSigDB.

The plotGeneSetEval function plots the enrichment scores from GSEA.

An overview of the package is illustrated below:

Contributions

The author for this package is Xin Zhi Fang.

The runPipelineCombs uses the pipeComp library to run all pipeline combinations, but does not use the same end results. The evaluation step from the pipeComp library is bypassed as it depends on cell type labels (which are not always available).

The fgsea package is used to perform GSEA on the clusters. As well, AnnotationDbi and org.Hs.eg.db are used to help map the gene symbols to names.

scran,Seurat, and scuttle are used in various functions for preprocessing of the scRNA-seq data.

SingleCellExperiment is used in almost all functions to store scRNA-seq data.

cluster and clValid were used to calculate the silhouette score and Dunn index, respectively.

ggplot2 and gridExtra were used for plotting functionality.

labelled, tibble, tidyverse, dplyr, and magrittr were used for data manipulation.

References

  1. Germain, P. L., Sonrel, A., & Robinson, M. D. (2020). pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools. Genome Biology, 21(1). https://doi.org/10.1186/s13059-020-02136-7

  2. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/s13059-014-0550-8

  3. Amezquita, R. A., Lun, A. T. L., Becht, E., Carey, V. J., Carpp, L. N., Geistlinger, L., Marini, F., Rue-Albrecht, K., Risso, D., Soneson, C., Waldron, L., Pagès, H., Smith, M. L., Huber, W., Morgan, M., Gottardo, R., & Hicks, S. C. (2019). Orchestrating single-cell analysis with Bioconductor. Nature Methods, 17(2), 137–145. https://doi.org/10.1038/s41592-019-0654-x

  4. Korotkevich, G., Sukhov, V., Budin, N., Shpak, B., Artyomov, M. N., & Sergushichev, A. (2016). Fast gene set enrichment analysis. BioRxiv. Published. https://doi.org/10.1101/060012

  5. McCarthy DJ, Campbell KR, Lun ATL, Willis QF (2017). “Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R.” Bioinformatics, 33, 1179-1186. doi: 10.1093/bioinformatics/btw777 (URL: https://doi.org/10.1093/bioinformatics/btw777).

  6. Joseph Larmarange (2021). labelled: Manipulating Labelled Data. R package version 2.9.0. https://CRAN.R-project.org/package=labelled

  7. Lun ATL, McCarthy DJ, Marioni JC (2016). “A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.” F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2 (URL: https://doi.org/10.12688/f1000research.9501.2).

  8. Hervé Pagès, Marc Carlson, Seth Falcon and Nianhua Li (2020). AnnotationDbi: Manipulation of SQLite-based annotations in Bioconductor. R package version 1.52.0. https://bioconductor.org/packages/AnnotationDbi

  9. Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

  10. Guy Brock, Vasyl Pihur, Susmita Datta, Somnath Datta (2008). clValid: An R Package for Cluster Validation. Journal of Statistical Software, 25(4), 1-22. URL https://www.jstatsoft.org/v25/i04/

  11. Hao and Hao et al. Integrated analysis of multimodal single-cell data. Cell (2021)

  12. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.(2021). cluster: Cluster Analysis Basics and Extensions. R package version 2.1.2.

  13. Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2021). dplyr: A Grammar of Data Manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr

  14. Kirill Müller and Hadley Wickham (2021). tibble: Simple Data Frames. R package version 3.1.6. https://CRAN.R-project.org/package=tibble

  15. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

  16. Stefan Milton Bache and Hadley Wickham (2020). magrittr: A Forward-Pipe Operator for R. R package version 2.0.1. https://CRAN.R-project.org/package=magrittr

  17. Baptiste Auguie (2017). gridExtra: Miscellaneous Functions for “Grid” Graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra

  18. Carlson M (2019). org.Hs.eg.db: Genome wide annotation for Human. R package version 3.8.2.

  19. Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nature Structural & Molecular Biology. 2013 Sep;20(9):1131-1139. DOI: 10.1038/nsmb.2660. PMID: 23934149.

  20. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell systems, 1(6), 417–425. https://doi.org/10.1016/j.cels.2015.12.004

Acknowledgements

This package was developed for BCB410H: Applied Bioinformatics, University of Toronto, Toronto, CANADA, 2019-2021.

Releases

No releases published

Packages

No packages published

Languages