Skip to content

chengjun/flownetwork

Folders and files

NameName
Last commit message
Last commit date

Latest commit

May 15, 2018
521bbe8 · May 15, 2018

History

26 Commits
May 15, 2018
May 15, 2018
May 15, 2018
May 15, 2018
May 27, 2017
May 26, 2017
May 15, 2018
May 15, 2018
May 26, 2017
May 26, 2017
May 15, 2018
May 15, 2018
May 15, 2018
May 26, 2017
May 15, 2018
May 26, 2017
May 15, 2018

Repository files navigation

flownetwork

A python package for flow network analysis https://pypi.python.org/pypi/flownetwork

install the most updated github version

pip install -U git+https://github.com/chengjun/flownetwork.git

install and upgrade

Open a terminal, and input:

pip install flownetwork

if your want to ungrade to a new version, just input:

pip install --upgrade flownetwork

if your want to uninstall, please input:

pip uninstall flownetwork

import

# import packages
import flownetwork.flownetwork as fn
import networkx as nx
import matplotlib.pyplot as plt

print(fn.__version__)
$version = 3.0.9$

flow network analysis

help(fn.constructFlowNetwork)
Help on function constructFlowNetwork in module flownetwork.flownetwork:

constructFlowNetwork(C)
    C is an array of two dimentions, e.g.,
    C = np.array([[user1, item1],
                  [user1, item2],
                  [user2, item1],
                  [user2, item3]])
    Return a balanced flow network
# constructing a flow network
demo = fn.attention_data
gd = fn.constructFlowNetwork(demo)
# drawing a demo network
fig = plt.figure(figsize=(12, 8),facecolor='white')
pos={0: np.array([ 0.2 ,  0.8]),
 2: np.array([ 0.2,  0.2]),
 1: np.array([ 0.4,  0.6]),
 6: np.array([ 0.4,  0.4]),
 4: np.array([ 0.7,  0.8]),
 5: np.array([ 0.7,  0.5]),
 3: np.array([ 0.7,  0.2 ]),
 'sink': np.array([ 1,  0.5]),
 'source': np.array([ 0,  0.5])}
width=[float(d['weight']*1.2) for (u,v,d) in gd.edges(data=True)]
edge_labels=dict([((u,v,),d['weight']) for u,v,d in gd.edges(data=True)])
nx.draw_networkx_edge_labels(gd,pos,edge_labels=edge_labels, font_size = 15, alpha = .5)
nx.draw(gd, pos, node_size = 3000, node_color = 'orange',
        alpha = 0.2, width = width, edge_color='orange',style='solid')
nx.draw_networkx_labels(gd,pos,font_size=18)
plt.show()

nx.info(gd)
'Name: \nType: DiGraph\nNumber of nodes: 9\nNumber of edges: 15\nAverage in degree:   1.6667\nAverage out degree:   1.6667'
# balancing the network
# if it is not balanced
gh = fn.flowBalancing(gd)
nx.info(gh)
'Name: \nType: DiGraph\nNumber of nodes: 9\nNumber of edges: 15\nAverage in degree:   1.6667\nAverage out degree:   1.6667'
# flow matrix
m = fn.getFlowMatrix(gd)
m
matrix([[ 0.,  1.,  0.,  0.,  3.,  1.,  0.,  0.,  0.],
        [ 0.,  0.,  3.,  0.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  2.,  0.,  0.,  0.,  0.,  2.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  2.],
        [ 0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  2.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  2.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.],
        [ 5.,  2.,  1.,  0.,  0.,  0.,  1.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
fn.getMarkovMatrix(m)
array([[ 0.        ,  0.2       ,  0.        ,  0.        ,  0.6       ,
         0.2       ,  0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  1.        ,  0.        ,  0.        ,
         0.        ,  0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  0.5       ,  0.        ,
         0.        ,  0.        ,  0.        ,  0.5       ],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
         0.        ,  0.        ,  0.        ,  1.        ],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
         0.33333333,  0.        ,  0.        ,  0.66666667],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
         0.        ,  0.        ,  0.        ,  1.        ],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
         0.        ,  0.        ,  0.        ,  1.        ],
       [ 0.55555556,  0.22222222,  0.11111111,  0.        ,  0.        ,
         0.        ,  0.11111111,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
         0.        ,  0.        ,  0.        ,  0.        ]])
fn.getUmatrix(gd)
matrix([[ 1.        ,  0.2       ,  0.2       ,  0.1       ,  0.6       ,
          0.4       ,  0.        ],
        [ 0.        ,  1.        ,  1.        ,  0.5       ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  1.        ,  0.5       ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  1.        ,  0.        ,
          0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,  1.        ,
          0.33333333,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
          1.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
          0.        ,  1.        ]])
# return dissipationToSink,totalFlow,flowFromSource

fn.networkDissipate(gd)
defaultdict(<function flownetwork.flownetwork.<lambda>>,
            {0: [0, 5, 5],
             1: [0, 3, 2],
             2: [2, 4, 1],
             3: [2, 2, 0],
             4: [2, 3, 0],
             5: [2, 2, 0],
             6: [1, 1, 1]})
# flow distance
fn.flowDistanceFromSource(gd)
{0: 1.0,
 1: 1.333333333333333,
 2: 2.0,
 3: 3.0,
 4: 2.0,
 5: 2.5,
 6: 1.0,
 'sink': 3.2222222222222214}
fn.outflow(gd, 1)
3
fn.inflow(gd, 1)
3
fn.averageFlowLength(gd)
3.2222222222222223
# fn.getAverageTimeMatrix(gd)

Plot

fig = plt.figure(figsize=(9, 9),facecolor='white')
ax = fig.add_subplot(111)
fn.plotTree(gd,ax)
plt.show()
from random import random
x = np.array(range(1, 100))
y = (x+random()*x)**3

plt.plot(x, y)
plt.xscale('log');plt.yscale('log')
plt.show()

png

fn.alloRegressPlot(x,y,'r','s','$x$','$y$', loglog=True)

png

rg = np.array([ 20.7863444 ,   9.40547933,   8.70934714,   8.62690145,
     7.16978087,   7.02575052,   6.45280959,   6.44755478,
     5.16630287,   5.16092884,   5.15618737,   5.05610068,
     4.87023561,   4.66753197,   4.41807645,   4.2635671 ,
     3.54454372,   2.7087178 ,   2.39016885,   1.9483156 ,
     1.78393238,   1.75432688,   1.12789787,   1.02098332,
     0.92653501,   0.32586582,   0.1514813 ,   0.09722761])
fn.powerLawExponentialCutOffPlot(rg, '$x$', '$p(x)$')
[-0.0099301962503268171,
 -0.064764460567964449,
 -0.17705123513352666,
 0.89999847894045781]

png

fn.DGBDPlot(rg)

png

from networkx.utils import powerlaw_sequence
pl_sequence = powerlaw_sequence(1000,exponent=2.5)

fig = plt.figure(figsize=(4, 4),facecolor='white')
ax = fig.add_subplot(111)
fn.plotPowerlaw(pl_sequence,ax,'r','$x$')
Calculating best minimal value for power law fit

png

fig = plt.figure(figsize=(4, 4),facecolor='white')
ax = fig.add_subplot(111)
fn.plotCCDF(pl_sequence,ax,'b','$x$')
Calculating best minimal value for power law fit

png

bins, result, gini_val = fn.gini_coefficient(np.array(pl_sequence))

plt.plot(bins, bins, '--', label="perfect")
plt.plot(bins, result, label="observed")
plt.title("$GINI: %.4f$" %(gini_val))

plt.legend(loc = 0, frameon = False)
plt.show()

png