-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'refs/remotes/origin/remove_nwbfile_path…
…_option_in_interface_run_conversion' into remove_nwbfile_path_option_in_interface_run_conversion
- Loading branch information
Showing
11 changed files
with
369 additions
and
65 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
288 changes: 288 additions & 0 deletions
288
src/neuroconv/datainterfaces/behavior/deeplabcut/_dlc_utils.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,288 @@ | ||
import importlib | ||
import os | ||
import pickle | ||
import warnings | ||
from pathlib import Path | ||
from typing import List, Optional, Union | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import yaml | ||
from pynwb import NWBFile | ||
from ruamel.yaml import YAML | ||
|
||
from ....utils import FilePathType | ||
|
||
|
||
def _read_config(config_file_path): | ||
""" | ||
Reads structured config file defining a project. | ||
""" | ||
ruamelFile = YAML() | ||
path = Path(config_file_path) | ||
if os.path.exists(path): | ||
try: | ||
with open(path, "r") as f: | ||
cfg = ruamelFile.load(f) | ||
curr_dir = os.path.dirname(config_file_path) | ||
if cfg["project_path"] != curr_dir: | ||
cfg["project_path"] = curr_dir | ||
except Exception as err: | ||
if len(err.args) > 2: | ||
if err.args[2] == "could not determine a constructor for the tag '!!python/tuple'": | ||
with open(path, "r") as ymlfile: | ||
cfg = yaml.load(ymlfile, Loader=yaml.SafeLoader) | ||
else: | ||
raise | ||
|
||
else: | ||
raise FileNotFoundError( | ||
"Config file is not found. Please make sure that the file exists and/or that you passed the path of the config file correctly!" | ||
) | ||
return cfg | ||
|
||
|
||
def _get_movie_timestamps(movie_file, VARIABILITYBOUND=1000, infer_timestamps=True): | ||
""" | ||
Return numpy array of the timestamps for a video. | ||
Parameters | ||
---------- | ||
movie_file : str | ||
Path to movie_file | ||
""" | ||
import cv2 | ||
|
||
reader = cv2.VideoCapture(movie_file) | ||
timestamps = [] | ||
n_frames = int(reader.get(cv2.CAP_PROP_FRAME_COUNT)) | ||
fps = reader.get(cv2.CAP_PROP_FPS) | ||
|
||
for _ in range(n_frames): | ||
_ = reader.read() | ||
timestamps.append(reader.get(cv2.CAP_PROP_POS_MSEC)) | ||
|
||
for _ in range(len(reader)): | ||
_ = reader.read() | ||
timestamps.append(reader.get(cv2.CAP_PROP_POS_MSEC)) | ||
|
||
timestamps = np.array(timestamps) / 1000 # Convert to seconds | ||
|
||
if np.nanvar(np.diff(timestamps)) < 1.0 / fps * 1.0 / VARIABILITYBOUND: | ||
warnings.warn( | ||
"Variability of timestamps suspiciously small. See: https://github.com/DeepLabCut/DLC2NWB/issues/1" | ||
) | ||
|
||
if any(timestamps[1:] == 0): | ||
# Infers times when OpenCV provides 0s | ||
warning_msg = "Removing" | ||
timestamp_zero_count = np.count_nonzero(timestamps == 0) | ||
timestamps[1:][timestamps[1:] == 0] = np.nan # replace 0s with nan | ||
|
||
if infer_timestamps: | ||
warning_msg = "Replacing" | ||
timestamps = _infer_nan_timestamps(timestamps) | ||
|
||
warnings.warn( # warns user of percent of 0 frames | ||
"%s cv2 timestamps returned as 0: %f%%" % (warning_msg, (timestamp_zero_count / len(timestamps) * 100)) | ||
) | ||
|
||
return timestamps | ||
|
||
|
||
def _infer_nan_timestamps(timestamps): | ||
"""Given np.array, interpolate nan values using index * sampling rate""" | ||
bad_timestamps_mask = np.isnan(timestamps) | ||
# Runs of good timestamps | ||
good_run_indices = np.where(np.diff(np.hstack(([False], bad_timestamps_mask == False, [False]))))[0].reshape(-1, 2) | ||
|
||
# For each good run, get the diff and append to cumulative array | ||
sampling_diffs = np.array([]) | ||
for idx in good_run_indices: | ||
sampling_diffs = np.append(sampling_diffs, np.diff(timestamps[idx[0] : idx[1]])) | ||
estimated_sampling_rate = np.mean(sampling_diffs) # Average over diffs | ||
|
||
# Infer timestamps with avg sampling rate | ||
bad_timestamps_indexes = np.argwhere(bad_timestamps_mask)[:, 0] | ||
inferred_timestamps = bad_timestamps_indexes * estimated_sampling_rate | ||
timestamps[bad_timestamps_mask] = inferred_timestamps | ||
|
||
return timestamps | ||
|
||
|
||
def _ensure_individuals_in_header(df, dummy_name): | ||
if "individuals" not in df.columns.names: | ||
# Single animal project -> add individual row to | ||
# the header of single animal projects. | ||
temp = pd.concat({dummy_name: df}, names=["individuals"], axis=1) | ||
df = temp.reorder_levels(["scorer", "individuals", "bodyparts", "coords"], axis=1) | ||
return df | ||
|
||
|
||
def _get_pes_args(config_file, h5file, individual_name, infer_timestamps=True): | ||
if "DLC" not in h5file or not h5file.endswith(".h5"): | ||
raise IOError("The file passed in is not a DeepLabCut h5 data file.") | ||
|
||
cfg = _read_config(config_file) | ||
|
||
vidname, scorer = os.path.split(h5file)[-1].split("DLC") | ||
scorer = "DLC" + os.path.splitext(scorer)[0] | ||
video = None | ||
|
||
df = _ensure_individuals_in_header(pd.read_hdf(h5file), individual_name) | ||
|
||
# Fetch the corresponding metadata pickle file | ||
paf_graph = [] | ||
filename, _ = os.path.splitext(h5file) | ||
for i, c in enumerate(filename[::-1]): | ||
if c.isnumeric(): | ||
break | ||
if i > 0: | ||
filename = filename[:-i] | ||
metadata_file = filename + "_meta.pickle" | ||
if os.path.isfile(metadata_file): | ||
with open(metadata_file, "rb") as file: | ||
metadata = pickle.load(file) | ||
test_cfg = metadata["data"]["DLC-model-config file"] | ||
paf_graph = test_cfg.get("partaffinityfield_graph", []) | ||
if paf_graph: | ||
paf_inds = test_cfg.get("paf_best") | ||
if paf_inds is not None: | ||
paf_graph = [paf_graph[i] for i in paf_inds] | ||
else: | ||
warnings.warn("Metadata not found...") | ||
|
||
for video_path, params in cfg["video_sets"].items(): | ||
if vidname in video_path: | ||
video = video_path, params["crop"] | ||
break | ||
|
||
if video is None: | ||
warnings.warn(f"The video file corresponding to {h5file} could not be found...") | ||
video = "fake_path", "0, 0, 0, 0" | ||
|
||
timestamps = df.index.tolist() # setting timestamps to dummy TODO: extract timestamps in DLC? | ||
else: | ||
timestamps = _get_movie_timestamps(video[0], infer_timestamps=infer_timestamps) | ||
return scorer, df, video, paf_graph, timestamps, cfg | ||
|
||
|
||
def _write_pes_to_nwbfile( | ||
nwbfile, | ||
animal, | ||
df_animal, | ||
scorer, | ||
video, # Expects this to be a tuple; first index is string path, second is the image shape as "0, width, 0, height" | ||
paf_graph, | ||
timestamps, | ||
exclude_nans, | ||
pose_estimation_container_kwargs: Optional[dict] = None, | ||
): | ||
from ndx_pose import PoseEstimation, PoseEstimationSeries | ||
|
||
pose_estimation_container_kwargs = pose_estimation_container_kwargs or dict() | ||
|
||
pose_estimation_series = [] | ||
for kpt, xyp in df_animal.groupby(level="bodyparts", axis=1, sort=False): | ||
data = xyp.to_numpy() | ||
|
||
if exclude_nans: | ||
# exclude_nans is inverse infer_timestamps. if not infer, there may be nans | ||
data = data[~np.isnan(timestamps)] | ||
timestamps_cleaned = timestamps[~np.isnan(timestamps)] | ||
else: | ||
timestamps_cleaned = timestamps | ||
|
||
pes = PoseEstimationSeries( | ||
name=f"{animal}_{kpt}", | ||
description=f"Keypoint {kpt} from individual {animal}.", | ||
data=data[:, :2], | ||
unit="pixels", | ||
reference_frame="(0,0) corresponds to the bottom left corner of the video.", | ||
timestamps=timestamps_cleaned, | ||
confidence=data[:, 2], | ||
confidence_definition="Softmax output of the deep neural network.", | ||
) | ||
pose_estimation_series.append(pes) | ||
|
||
deeplabcut_version = None | ||
is_deeplabcut_installed = importlib.util.find_spec(name="deeplabcut") is not None | ||
if is_deeplabcut_installed: | ||
deeplabcut_version = importlib.metadata.version(distribution_name="deeplabcut") | ||
|
||
pose_estimation_default_kwargs = dict( | ||
pose_estimation_series=pose_estimation_series, | ||
description="2D keypoint coordinates estimated using DeepLabCut.", | ||
original_videos=[video[0]], | ||
# TODO check if this is a mandatory arg in ndx-pose (can skip if video is not found_ | ||
dimensions=[list(map(int, video[1].split(",")))[1::2]], | ||
scorer=scorer, | ||
source_software="DeepLabCut", | ||
source_software_version=deeplabcut_version, | ||
nodes=[pes.name for pes in pose_estimation_series], | ||
edges=paf_graph if paf_graph else None, | ||
**pose_estimation_container_kwargs, | ||
) | ||
pose_estimation_default_kwargs.update(pose_estimation_container_kwargs) | ||
pose_estimation_container = PoseEstimation(**pose_estimation_default_kwargs) | ||
|
||
if "behavior" in nwbfile.processing: # TODO: replace with get_module | ||
behavior_processing_module = nwbfile.processing["behavior"] | ||
else: | ||
behavior_processing_module = nwbfile.create_processing_module( | ||
name="behavior", description="processed behavioral data" | ||
) | ||
behavior_processing_module.add(pose_estimation_container) | ||
|
||
return nwbfile | ||
|
||
|
||
def add_subject_to_nwbfile( | ||
nwbfile: NWBFile, | ||
h5file: FilePathType, | ||
individual_name: str, | ||
config_file: FilePathType, | ||
timestamps: Optional[Union[List, np.ndarray]] = None, | ||
pose_estimation_container_kwargs: Optional[dict] = None, | ||
) -> NWBFile: | ||
""" | ||
Given the subject name, add the DLC .h5 file to an in-memory NWBFile object. | ||
Parameters | ||
---------- | ||
nwbfile : pynwb.NWBFile | ||
The in-memory nwbfile object to which the subject specific pose estimation series will be added. | ||
h5file : str or path | ||
Path to the DeepLabCut .h5 output file. | ||
individual_name : str | ||
Name of the subject (whose pose is predicted) for single-animal DLC project. | ||
For multi-animal projects, the names from the DLC project will be used directly. | ||
config_file : str or path | ||
Path to a project config.yaml file | ||
timestamps : list, np.ndarray or None, default: None | ||
Alternative timestamps vector. If None, then use the inferred timestamps from DLC2NWB | ||
pose_estimation_container_kwargs : dict, optional | ||
Dictionary of keyword argument pairs to pass to the PoseEstimation container. | ||
Returns | ||
------- | ||
nwbfile : pynwb.NWBFile | ||
nwbfile with pes written in the behavior module | ||
""" | ||
scorer, df, video, paf_graph, dlc_timestamps, _ = _get_pes_args(config_file, h5file, individual_name) | ||
if timestamps is None: | ||
timestamps = dlc_timestamps | ||
|
||
df_animal = df.groupby(level="individuals", axis=1).get_group(individual_name) | ||
|
||
return _write_pes_to_nwbfile( | ||
nwbfile, | ||
individual_name, | ||
df_animal, | ||
scorer, | ||
video, | ||
paf_graph, | ||
timestamps, | ||
exclude_nans=False, | ||
pose_estimation_container_kwargs=pose_estimation_container_kwargs, | ||
) |
Oops, something went wrong.