Skip to content

Commit

Permalink
Merge branch 'main' into bendichter-patch-1
Browse files Browse the repository at this point in the history
  • Loading branch information
CodyCBakerPhD authored Jul 11, 2024
2 parents e0bb612 + ddb8a86 commit bd39c6f
Show file tree
Hide file tree
Showing 6 changed files with 314 additions and 50 deletions.
3 changes: 1 addition & 2 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,7 @@
* Make annotations from the raw format available on `IntanRecordingInterface`. [PR #934](https://github.com/catalystneuro/neuroconv/pull/943)
* Add an option to suppress display the progress bar (tqdm) in `VideoContext` [PR #937](https://github.com/catalystneuro/neuroconv/pull/937)
* Automatic compression of data in the `LightnignPoseDataInterface` has been disabled - users should refer to the new `configure_backend` method for a general approach for setting compression. [PR #942](https://github.com/catalystneuro/neuroconv/pull/942)


* Port over `dlc2nwb` utility functions for ease of maintenance. [PR #946](https://github.com/catalystneuro/neuroconv/pull/946)



Expand Down
1 change: 0 additions & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,6 @@
license="BSD-3-Clause",
classifiers=[
"Intended Audience :: Science/Research",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
Expand Down
288 changes: 288 additions & 0 deletions src/neuroconv/datainterfaces/behavior/deeplabcut/_dlc_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,288 @@
import importlib
import os
import pickle
import warnings
from pathlib import Path
from typing import List, Optional, Union

import numpy as np
import pandas as pd
import yaml
from pynwb import NWBFile
from ruamel.yaml import YAML

from ....utils import FilePathType


def _read_config(config_file_path):
"""
Reads structured config file defining a project.
"""
ruamelFile = YAML()
path = Path(config_file_path)
if os.path.exists(path):
try:
with open(path, "r") as f:
cfg = ruamelFile.load(f)
curr_dir = os.path.dirname(config_file_path)
if cfg["project_path"] != curr_dir:
cfg["project_path"] = curr_dir
except Exception as err:
if len(err.args) > 2:
if err.args[2] == "could not determine a constructor for the tag '!!python/tuple'":
with open(path, "r") as ymlfile:
cfg = yaml.load(ymlfile, Loader=yaml.SafeLoader)
else:
raise

else:
raise FileNotFoundError(
"Config file is not found. Please make sure that the file exists and/or that you passed the path of the config file correctly!"
)
return cfg


def _get_movie_timestamps(movie_file, VARIABILITYBOUND=1000, infer_timestamps=True):
"""
Return numpy array of the timestamps for a video.
Parameters
----------
movie_file : str
Path to movie_file
"""
import cv2

reader = cv2.VideoCapture(movie_file)
timestamps = []
n_frames = int(reader.get(cv2.CAP_PROP_FRAME_COUNT))
fps = reader.get(cv2.CAP_PROP_FPS)

for _ in range(n_frames):
_ = reader.read()
timestamps.append(reader.get(cv2.CAP_PROP_POS_MSEC))

for _ in range(len(reader)):
_ = reader.read()
timestamps.append(reader.get(cv2.CAP_PROP_POS_MSEC))

timestamps = np.array(timestamps) / 1000 # Convert to seconds

if np.nanvar(np.diff(timestamps)) < 1.0 / fps * 1.0 / VARIABILITYBOUND:
warnings.warn(
"Variability of timestamps suspiciously small. See: https://github.com/DeepLabCut/DLC2NWB/issues/1"
)

if any(timestamps[1:] == 0):
# Infers times when OpenCV provides 0s
warning_msg = "Removing"
timestamp_zero_count = np.count_nonzero(timestamps == 0)
timestamps[1:][timestamps[1:] == 0] = np.nan # replace 0s with nan

if infer_timestamps:
warning_msg = "Replacing"
timestamps = _infer_nan_timestamps(timestamps)

warnings.warn( # warns user of percent of 0 frames
"%s cv2 timestamps returned as 0: %f%%" % (warning_msg, (timestamp_zero_count / len(timestamps) * 100))
)

return timestamps


def _infer_nan_timestamps(timestamps):
"""Given np.array, interpolate nan values using index * sampling rate"""
bad_timestamps_mask = np.isnan(timestamps)
# Runs of good timestamps
good_run_indices = np.where(np.diff(np.hstack(([False], bad_timestamps_mask == False, [False]))))[0].reshape(-1, 2)

# For each good run, get the diff and append to cumulative array
sampling_diffs = np.array([])
for idx in good_run_indices:
sampling_diffs = np.append(sampling_diffs, np.diff(timestamps[idx[0] : idx[1]]))
estimated_sampling_rate = np.mean(sampling_diffs) # Average over diffs

# Infer timestamps with avg sampling rate
bad_timestamps_indexes = np.argwhere(bad_timestamps_mask)[:, 0]
inferred_timestamps = bad_timestamps_indexes * estimated_sampling_rate
timestamps[bad_timestamps_mask] = inferred_timestamps

return timestamps


def _ensure_individuals_in_header(df, dummy_name):
if "individuals" not in df.columns.names:
# Single animal project -> add individual row to
# the header of single animal projects.
temp = pd.concat({dummy_name: df}, names=["individuals"], axis=1)
df = temp.reorder_levels(["scorer", "individuals", "bodyparts", "coords"], axis=1)
return df


def _get_pes_args(config_file, h5file, individual_name, infer_timestamps=True):
if "DLC" not in h5file or not h5file.endswith(".h5"):
raise IOError("The file passed in is not a DeepLabCut h5 data file.")

cfg = _read_config(config_file)

vidname, scorer = os.path.split(h5file)[-1].split("DLC")
scorer = "DLC" + os.path.splitext(scorer)[0]
video = None

df = _ensure_individuals_in_header(pd.read_hdf(h5file), individual_name)

# Fetch the corresponding metadata pickle file
paf_graph = []
filename, _ = os.path.splitext(h5file)
for i, c in enumerate(filename[::-1]):
if c.isnumeric():
break
if i > 0:
filename = filename[:-i]
metadata_file = filename + "_meta.pickle"
if os.path.isfile(metadata_file):
with open(metadata_file, "rb") as file:
metadata = pickle.load(file)
test_cfg = metadata["data"]["DLC-model-config file"]
paf_graph = test_cfg.get("partaffinityfield_graph", [])
if paf_graph:
paf_inds = test_cfg.get("paf_best")
if paf_inds is not None:
paf_graph = [paf_graph[i] for i in paf_inds]
else:
warnings.warn("Metadata not found...")

for video_path, params in cfg["video_sets"].items():
if vidname in video_path:
video = video_path, params["crop"]
break

if video is None:
warnings.warn(f"The video file corresponding to {h5file} could not be found...")
video = "fake_path", "0, 0, 0, 0"

timestamps = df.index.tolist() # setting timestamps to dummy TODO: extract timestamps in DLC?
else:
timestamps = _get_movie_timestamps(video[0], infer_timestamps=infer_timestamps)
return scorer, df, video, paf_graph, timestamps, cfg


def _write_pes_to_nwbfile(
nwbfile,
animal,
df_animal,
scorer,
video, # Expects this to be a tuple; first index is string path, second is the image shape as "0, width, 0, height"
paf_graph,
timestamps,
exclude_nans,
pose_estimation_container_kwargs: Optional[dict] = None,
):
from ndx_pose import PoseEstimation, PoseEstimationSeries

pose_estimation_container_kwargs = pose_estimation_container_kwargs or dict()

pose_estimation_series = []
for kpt, xyp in df_animal.groupby(level="bodyparts", axis=1, sort=False):
data = xyp.to_numpy()

if exclude_nans:
# exclude_nans is inverse infer_timestamps. if not infer, there may be nans
data = data[~np.isnan(timestamps)]
timestamps_cleaned = timestamps[~np.isnan(timestamps)]
else:
timestamps_cleaned = timestamps

pes = PoseEstimationSeries(
name=f"{animal}_{kpt}",
description=f"Keypoint {kpt} from individual {animal}.",
data=data[:, :2],
unit="pixels",
reference_frame="(0,0) corresponds to the bottom left corner of the video.",
timestamps=timestamps_cleaned,
confidence=data[:, 2],
confidence_definition="Softmax output of the deep neural network.",
)
pose_estimation_series.append(pes)

deeplabcut_version = None
is_deeplabcut_installed = importlib.util.find_spec(name="deeplabcut") is not None
if is_deeplabcut_installed:
deeplabcut_version = importlib.metadata.version(distribution_name="deeplabcut")

pose_estimation_default_kwargs = dict(
pose_estimation_series=pose_estimation_series,
description="2D keypoint coordinates estimated using DeepLabCut.",
original_videos=[video[0]],
# TODO check if this is a mandatory arg in ndx-pose (can skip if video is not found_
dimensions=[list(map(int, video[1].split(",")))[1::2]],
scorer=scorer,
source_software="DeepLabCut",
source_software_version=deeplabcut_version,
nodes=[pes.name for pes in pose_estimation_series],
edges=paf_graph if paf_graph else None,
**pose_estimation_container_kwargs,
)
pose_estimation_default_kwargs.update(pose_estimation_container_kwargs)
pose_estimation_container = PoseEstimation(**pose_estimation_default_kwargs)

if "behavior" in nwbfile.processing: # TODO: replace with get_module
behavior_processing_module = nwbfile.processing["behavior"]
else:
behavior_processing_module = nwbfile.create_processing_module(
name="behavior", description="processed behavioral data"
)
behavior_processing_module.add(pose_estimation_container)

return nwbfile


def add_subject_to_nwbfile(
nwbfile: NWBFile,
h5file: FilePathType,
individual_name: str,
config_file: FilePathType,
timestamps: Optional[Union[List, np.ndarray]] = None,
pose_estimation_container_kwargs: Optional[dict] = None,
) -> NWBFile:
"""
Given the subject name, add the DLC .h5 file to an in-memory NWBFile object.
Parameters
----------
nwbfile : pynwb.NWBFile
The in-memory nwbfile object to which the subject specific pose estimation series will be added.
h5file : str or path
Path to the DeepLabCut .h5 output file.
individual_name : str
Name of the subject (whose pose is predicted) for single-animal DLC project.
For multi-animal projects, the names from the DLC project will be used directly.
config_file : str or path
Path to a project config.yaml file
timestamps : list, np.ndarray or None, default: None
Alternative timestamps vector. If None, then use the inferred timestamps from DLC2NWB
pose_estimation_container_kwargs : dict, optional
Dictionary of keyword argument pairs to pass to the PoseEstimation container.
Returns
-------
nwbfile : pynwb.NWBFile
nwbfile with pes written in the behavior module
"""
scorer, df, video, paf_graph, dlc_timestamps, _ = _get_pes_args(config_file, h5file, individual_name)
if timestamps is None:
timestamps = dlc_timestamps

df_animal = df.groupby(level="individuals", axis=1).get_group(individual_name)

return _write_pes_to_nwbfile(
nwbfile,
individual_name,
df_animal,
scorer,
video,
paf_graph,
timestamps,
exclude_nans=False,
pose_estimation_container_kwargs=pose_estimation_container_kwargs,
)
Loading

0 comments on commit bd39c6f

Please sign in to comment.