Skip to content

buetnlpbio/BiRNA-BERT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Authors' implementation of BiRNA-BERT Allows Efficient RNA Language Modeling with Adaptive Tokenization

🤗BiRNA-BERT Model Zoo

BiRNA-BERT

BiRNA-BERT is a BERT-style transformer encoder model that generates embeddings for RNA sequences. BiRNA-BERT has been trained on BPE tokens and individual nucleotides. As a result, it can generate both granular nucleotide-level embeddings and efficient sequence-level embeddings (using BPE).

BiRNA-BERT was trained using the MosaicBERT framework - https://huggingface.co/mosaicml/mosaic-bert-base

Extracting RNA embeddings

import torch
import transformers
from transformers import AutoModelForMaskedLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("buetnlpbio/birna-tokenizer")

config = transformers.BertConfig.from_pretrained("buetnlpbio/birna-bert")
mysterybert = AutoModelForMaskedLM.from_pretrained("buetnlpbio/birna-bert",config=config,trust_remote_code=True)
mysterybert.cls = torch.nn.Identity()

# To get sequence embeddings
seq_embed = mysterybert(**tokenizer("AGCTACGTACGT", return_tensors="pt"))
print(seq_embed.logits.shape) # CLS + 4 BPE token embeddings + SEP

# To get nucleotide embeddings
char_embed = mysterybert(**tokenizer("A G C T A C G T A C G T", return_tensors="pt")) 
print(char_embed.logits.shape) # CLS + 12 nucleotide token embeddings + SEP

Explicitly increasing max sequence length

config = transformers.BertConfig.from_pretrained("buetnlpbio/birna-bert")
config.alibi_starting_size = 2048 # maximum sequence length updated to 2048 from config default of 1024

mysterybert = AutoModelForMaskedLM.from_pretrained("buetnlpbio/birna-bert",config=config,trust_remote_code=True)

Download Model and Tokenizer (External Link)

Download model
Download tokenizer

Citation

@article {Tahmid2024.07.02.601703,
	author = {Tahmid, Md Toki and Shahgir, Haz Sameen and Mahbub, Sazan and Dong, Yue and Bayzid, Md. Shamsuzzoha},
	title = {BiRNA-BERT Allows Efficient RNA Language Modeling with Adaptive Tokenization},
	elocation-id = {2024.07.02.601703},
	year = {2024},
	doi = {10.1101/2024.07.02.601703},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/07/04/2024.07.02.601703},
	eprint = {https://www.biorxiv.org/content/early/2024/07/04/2024.07.02.601703.full.pdf},
	journal = {bioRxiv}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages