Skip to content

Commit

Permalink
Reciprocal square root, parallel r-sqrt/inv
Browse files Browse the repository at this point in the history
- Factor out common exponentiation prelude for _fe_sqrt_var/fe_inv
- Allow _fe_sqrt_var output to overwrite input
- Make argument for _fe_normalizes_to_zero(_var) const
- Add _fe_rsqrt_var for calculating reciprocal square root (1/sqrt(x))
- Add _fe_par_rsqrt_inv_var to calculate the r-sqrt of one input and
  the inverse of a second input, with a single exponentiation.
  • Loading branch information
peterdettman committed Nov 29, 2015
1 parent a965937 commit 61df470
Show file tree
Hide file tree
Showing 6 changed files with 241 additions and 109 deletions.
22 changes: 22 additions & 0 deletions src/bench_internal.c
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,26 @@ void bench_field_sqrt_var(void* arg) {
}
}

void bench_field_rsqrt_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;

for (i = 0; i < 20000; i++) {
secp256k1_fe_rsqrt_var(&data->fe_x, &data->fe_y, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}

void bench_field_par_rsqrt_inv_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;

for (i = 0; i < 20000; i++) {
secp256k1_fe_par_rsqrt_inv_var(&data->fe_x, &data->fe_y, &data->fe_x, &data->fe_y);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}

void bench_group_double_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
Expand Down Expand Up @@ -334,6 +354,8 @@ int main(int argc, char **argv) {
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt_var", bench_field_sqrt_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_rsqrt_var", bench_field_rsqrt_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt") || have_flag(argc, argv, "inverse")) run_benchmark("field_par_rsqrt_inv_var", bench_field_par_rsqrt_inv_var, bench_setup, NULL, &data, 10, 20000);

if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000);
Expand Down
28 changes: 21 additions & 7 deletions src/field.h
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,11 @@ static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
/** Normalize a field element, without constant-time guarantee. */
static void secp256k1_fe_normalize_var(secp256k1_fe *r);

/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. */
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r);

/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. */
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r);

/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
Expand Down Expand Up @@ -88,12 +86,28 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);

/** If a has a square root, it is computed in r and 1 is returned. If a does not
* have a square root, the root of its negation is computed and 0 is returned.
* have a square root, the root of -a is computed and 0 is returned.
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);

/** If a has a square root, the square root is computed in rs, its reciprocal square root is
* calculated in rr, and 1 is returned. If a does not have a square root, the root (and recip. root)
* of -a are computed and 0 is returned. The input's magnitude can be at most 8. The
* outputs' magnitudes are 1 (but not guaranteed to be normalized). The result in rs will always be
* a square itself. The result in rr will be a square if, and only if, a is a square.
*/
static int secp256k1_fe_rsqrt_var(secp256k1_fe *rs, secp256k1_fe *rr, const secp256k1_fe *a);

/** Parallel reciprocal square root and inverse. Sets ri to be the (modular) inverse of b. If a has a
* square root, the reciprocal of its square root is computed in rr and 1 is returned. If a does not
* have a square root, the reciprocal root of -a is computed and 0 is returned. The inputs'
* magnitudes can be at most 8. The outputs' magnitudes are 1 (but not guaranteed to be normalized).
* The result in rr will be a square if, and only if, a is a square.
*/
static int secp256k1_fe_par_rsqrt_inv_var(secp256k1_fe *rr, secp256k1_fe *ri, const secp256k1_fe *a, const secp256k1_fe *b);

/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
Expand Down
4 changes: 2 additions & 2 deletions src/field_10x26_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -188,7 +188,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
#endif
}

static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
uint32_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4],
t5 = r->n[5], t6 = r->n[6], t7 = r->n[7], t8 = r->n[8], t9 = r->n[9];

Expand Down Expand Up @@ -217,7 +217,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
return (z0 == 0) | (z1 == 0x3FFFFFFUL);
}

static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
uint32_t z0, z1;
uint32_t x;
Expand Down
4 changes: 2 additions & 2 deletions src/field_5x52_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
#endif
}

static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];

/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
Expand All @@ -190,7 +190,7 @@ static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}

static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
uint64_t t0, t1, t2, t3, t4;
uint64_t z0, z1;
uint64_t x;
Expand Down
182 changes: 87 additions & 95 deletions src/field_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -28,29 +28,21 @@ SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const
return secp256k1_fe_normalizes_to_zero_var(&na);
}

static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
static void secp256k1_fe_common_exp(secp256k1_fe *r1, secp256k1_fe *r2, const secp256k1_fe *a) {
secp256k1_fe t, x, x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223;
int j;

/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
CHECK(r1 != r2);

x = *a;

secp256k1_fe_sqr(&x2, &x);
secp256k1_fe_mul(&x2, &x2, &x);

secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
*r2 = x2;

secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
secp256k1_fe_mul(&x3, &x3, &x);

x6 = x3;
for (j=0; j<3; j++) {
Expand Down Expand Up @@ -108,112 +100,112 @@ static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {

/* The final result is then assembled using a sliding window over the blocks. */

t1 = x223;
t = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(&t, &t);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<6; j++) {
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_mul(&t, &t, &x22);

for (j=0; j<5; j++) {
secp256k1_fe_sqr(&t, &t);
}
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
*r1 = t;
}

static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe t, x, x2;

x = *a;

secp256k1_fe_common_exp(&t, &x2, &x);

secp256k1_fe_sqr(&t, &t);
secp256k1_fe_mul(&t, &t, &x2);
secp256k1_fe_sqr(&t, &t);
secp256k1_fe_sqr(&t, &t);

*r = t;

/* Check that a square root was actually calculated */

secp256k1_fe_sqr(&t1, r);
return secp256k1_fe_equal_var(&t1, a);
secp256k1_fe_sqr(&t, &t);
return secp256k1_fe_equal_var(&t, &x);
}

static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
static int secp256k1_fe_rsqrt_var(secp256k1_fe *rs, secp256k1_fe *rr, const secp256k1_fe *a) {
secp256k1_fe t, x, x2;
int j;

/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
* { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
CHECK(rs != rr);

secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
x = *a;

secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
secp256k1_fe_common_exp(&t, &x2, &x);

x6 = x3;
secp256k1_fe_mul(&t, &t, &x);
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
secp256k1_fe_sqr(&t, &t);
}
secp256k1_fe_mul(&x6, &x6, &x3);
secp256k1_fe_mul(&t, &t, &x2);

x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
*rr = t;

x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
secp256k1_fe_mul(&t, &t, &x);

x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
*rs = t;

x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
/* Check that a square root was actually calculated */

x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
secp256k1_fe_sqr(&t, &t);
return secp256k1_fe_equal_var(&t, &x);
}

x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
static int secp256k1_fe_par_rsqrt_inv_var(secp256k1_fe *rr, secp256k1_fe *ri, const secp256k1_fe *a, const secp256k1_fe *b) {

x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
secp256k1_fe b2, ab2, ab4, sqrt, recip, t;
int ret;

x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
CHECK(rr != ri);

/* The final result is then assembled using a sliding window over the blocks. */
/* Zero inputs could possibly be handled with conditional moves, if necessary */
CHECK(!secp256k1_fe_normalizes_to_zero(a) && !secp256k1_fe_normalizes_to_zero(b));

t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<5; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, a);
/* Calculate the reciprocal sqrt of a.b^4 */

secp256k1_fe_sqr(&b2, b);
secp256k1_fe_mul(&ab2, &b2, a);
secp256k1_fe_mul(&ab4, &ab2, &b2);

ret = secp256k1_fe_rsqrt_var(&sqrt, &recip, &ab4);

/* Inverse */
secp256k1_fe_sqr(&t, &recip);
secp256k1_fe_mul(&t, &t, &ab2);
secp256k1_fe_mul(&t, &t, b);
secp256k1_fe_sqr(&t, &t);
secp256k1_fe_mul(ri, b, &t);

/* Reciprocal */
secp256k1_fe_mul(rr, &recip, &b2);

return ret;
}

static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe t, x2;
int j;

secp256k1_fe_common_exp(&t, &x2, a);

secp256k1_fe_mul(&t, &t, a);
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(&t, &t);
}
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_mul(&t, &t, &x2);
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(&t, &t);
}
secp256k1_fe_mul(r, a, &t1);
secp256k1_fe_mul(r, a, &t);
}

static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
Expand Down
Loading

0 comments on commit 61df470

Please sign in to comment.