Skip to content

Unravelling three-dimensionally dynamics of spatial multi-modal data

License

Notifications You must be signed in to change notification settings

bioinfo-biols/RidgeSpace

Folders and files

NameName
Last commit message
Last commit date

Latest commit

946cb02 · Jan 22, 2025

History

32 Commits
Dec 11, 2024
Jan 22, 2025
Dec 11, 2024
Dec 11, 2024
Aug 2, 2024
Aug 2, 2024
Aug 2, 2024
Dec 10, 2024
Dec 11, 2024

Repository files navigation

Unravelling three-dimensionally dynamics of spatial multi-modal data with RidgeSpace

You can freely use RidgeSpace for illustrating, comparing, and tracking the spatial dynamics of molecular signals.

Overview of RidgeSpace.

Prerequisites

"matplotlib", "numpy", "pandas", "scipy"

Installation

I suggest that you can freely install RidgeSpace with pip.

pip install RidgeSpace

You can also use a separate conda environment for installing RidgeSpace.

conda create -y -n RidgeSpace_env python=3.7
source activate RidgeSpace_env
pip install RidgeSpace

Basic Examples

Examples of RidgeSpace.

Test data and code for RidgeSpace provided in the "tests" folder.

Single-gene spatial depiction:

RidgeSpace.pl_single(adata, plot_name = 'Mbp', obs_cluster='Clusters', elev=40, view=160))

Multi-modal spatial comparison:

RidgeSpace.pl_multipleOUT(adata, plot_nameA = 'Tnnt1', plot_nameB = 'Tnnt2', obs_cluster='Clusters', elev=20, view=160, plot_HE_bg=True)

Pseudotime spatial trajectory representation:

RidgeSpace.pl_trajectory(adata, plot_name = 'Pseudotime', obs_cluster='Clusters', elev=45, view=165, HE_z=10)

Further tutorials please refer to https://RidgeSpace.readthedocs.io/.

About

Unravelling three-dimensionally dynamics of spatial multi-modal data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published