forked from felixbur/nkululeko
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
124 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
# Nkululeko pre-processing for EmoChildRu Dataset | ||
|
||
```bash | ||
# grad the dataset from github | ||
git clone https://github.com/hydra-colab/Emotion-Recognition-of-Younger-School-Age-Children | ||
|
||
# rename WAV with wav | ||
find Emotion-Recognition-of-Younger-School-Age-Children -name '*.WAV' -exec bash -c 'f="{}"; mv -- "$f" "${f%.WAV}.wav"' \; | ||
# check number of file, should be 2505 | ||
find Emotion-Recognition-of-Younger-School-Age-Children/ -name '*.wav' | wc -l | ||
# process database | ||
python3 process_database.py | ||
# resample and run | ||
cd ../.. | ||
python3 -m nkululeko.resample --config data/erysac/exp.ini | ||
python3 -m nkululeko.nkululeko --config data/erysac/exp.ini | ||
``` | ||
|
||
|
||
Reference: | ||
[1] E. Lyakso et al., “EmoChildRu: Emotional child Russian speech corpus,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9319, pp. 144–152, 2015, doi: 10.1007/978-3-319-23132-7_18. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
[EXP] | ||
root = ./results/ | ||
name = exp_erysac_wavlm_os_knn | ||
[DATA] | ||
databases = ['train', 'dev', 'test'] | ||
train = ./data/erysac/erysac_train.csv | ||
train.type = csv | ||
train.absolute_path = False | ||
train.split_strategy = train | ||
dev = ./data/erysac/erysac_dev.csv | ||
dev.type = csv | ||
dev.absolute_path = False | ||
dev.split_strategy = train | ||
test = ./data/erysac/erysac_test.csv | ||
test.type = csv | ||
test.absolute_path = False | ||
test.split_strategy = test | ||
target = emotion | ||
; labels = ['anger', 'neutral', 'fear'] | ||
; get the number of classes from the target column automatically | ||
[FEATS] | ||
; type = ['audmodel'] | ||
; type = ['hubert-large-ll60k'] | ||
type = ['wavlm-large'] | ||
scale = standard | ||
[MODEL] | ||
type = knn | ||
; save = True | ||
[RESAMPLE] | ||
replace = True |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
# process_database.py for emochildru datasets | ||
|
||
import argparse | ||
from pathlib import Path | ||
from nkululeko.utils.files import find_files | ||
import pandas as pd | ||
|
||
gender_map = {"m": "male", "f": "female"} | ||
|
||
def process_database(data_dir, output_dir): | ||
# check if data_dir exists | ||
data_dir = Path(data_dir) | ||
if not data_dir.exists(): | ||
raise FileNotFoundError(f"Directory {data_dir} not found") | ||
|
||
# check if output_dir exists, create if not | ||
output_dir = Path(output_dir) | ||
if not output_dir.exists(): | ||
output_dir.mkdir(parents=True) | ||
|
||
# find all wav files | ||
wavs = find_files(data_dir, ext=["wav"], relative=True) | ||
|
||
# extract filename as df | ||
df = pd.DataFrame({"file": wavs}) | ||
|
||
# extract emotion from filename's parent | ||
df["emotion"] = df["file"].apply(lambda x: Path(x).parent.name.lower()) | ||
|
||
# extract speaker first string before _ in the filename | ||
df["speaker"] = df["file"].apply(lambda x: Path(x).stem.split("_")[0]) | ||
|
||
# extract gender, second string, m for male f for female, map | ||
df["gender"] = df["file"].apply(lambda x: Path(x).stem.split("_")[1]) | ||
# map m to male, f to female | ||
df["gender"] = df["gender"].apply(lambda x: gender_map[x]) | ||
|
||
# extract age, third string, remove the suffix y | ||
df["age"] = df["file"].apply(lambda x: Path(x).stem.split("_")[2][:-1]) | ||
|
||
# check number of speakers | ||
speakers = df["speaker"].unique() | ||
print(f"Number of speakers: {len(speakers)}") | ||
|
||
# allocate 20% of speakers as test | ||
test_speakers = speakers[: len(speakers) // 5] | ||
df_test = df[df["speaker"].isin(test_speakers)] | ||
|
||
# allocate 20% train for dev | ||
dev_speakers = speakers[len(speakers) // 5 : len(speakers) // 5 * 2] | ||
df_dev = df[df["speaker"].isin(dev_speakers)] | ||
df_train = df.drop(df_dev.index) | ||
|
||
# save to CSV | ||
for split in ["train", "dev", "test"]: | ||
df_split = eval(f"df_{split}") | ||
df_split.to_csv(output_dir / f"erysac_{split}.csv", index=False) | ||
print(f"Saved {split} set to {output_dir / f'erysac_{split}.csv'}" | ||
f"with {len(df_split)} samples") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--data_dir", type=str, default="./Emotion-Recognition-of-Younger-School-Age-Children/") | ||
parser.add_argument("--output_dir", type=str, default="./") | ||
args = parser.parse_args() | ||
|
||
process_database(args.data_dir, args.output_dir) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters