Skip to content

Commit

Permalink
fix current workflow errors
Browse files Browse the repository at this point in the history
  • Loading branch information
bachittle committed Nov 25, 2023
1 parent 1e65f66 commit ee07308
Show file tree
Hide file tree
Showing 9 changed files with 500 additions and 529 deletions.
2 changes: 1 addition & 1 deletion examples/llama.swiftui/.gitignore
Original file line number Diff line number Diff line change
@@ -1 +1 @@
xcuserdata
xcuserdata
4 changes: 2 additions & 2 deletions examples/llama.swiftui/README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# llama.swiftui

Local inference of llama.cpp on an iPhone.
So far I only tested with starcoder 1B model, but it can most likely handle 7B models as well.
Local inference of llama.cpp on an iPhone.
So far I only tested with starcoder 1B model, but it can most likely handle 7B models as well.

https://github.com/bachittle/llama.cpp/assets/39804642/e290827a-4edb-4093-9642-2a5e399ec545

80 changes: 40 additions & 40 deletions examples/llama.swiftui/llama.cpp.swift/LibLlama.swift
Original file line number Diff line number Diff line change
Expand Up @@ -11,28 +11,28 @@ actor LlamaContext {
private var context: OpaquePointer
private var batch: llama_batch
private var tokens_list: [llama_token]

var n_len: Int32 = 512
var n_cur: Int32 = 0
var n_decode: Int32 = 0

init(model: OpaquePointer, context: OpaquePointer) {
self.model = model
self.context = context
self.tokens_list = []
self.batch = llama_batch_init(512, 0, 1)
}

deinit {
llama_free(context)
llama_free_model(model)
llama_backend_free()
}

static func createContext(path: String) throws -> LlamaContext {
llama_backend_init(false)
let model_params = llama_model_default_params()

let model = llama_load_model_from_file(path, model_params)
guard let model else {
print("Could not load model at \(path)")
Expand All @@ -43,41 +43,41 @@ actor LlamaContext {
ctx_params.n_ctx = 2048
ctx_params.n_threads = 8
ctx_params.n_threads_batch = 8

let context = llama_new_context_with_model(model, ctx_params)
guard let context else {
print("Could not load context!")
throw LlamaError.couldNotInitializeContext
}

return LlamaContext(model: model, context: context)
}

func get_n_tokens() -> Int32 {
return batch.n_tokens;
}

func completion_init(text: String) {
print("attempting to complete \"\(text)\"")

tokens_list = tokenize(text: text, add_bos: true)

let n_ctx = llama_n_ctx(context)
let n_kv_req = tokens_list.count + (Int(n_len) - tokens_list.count)

print("\n n_len = \(n_len), n_ctx = \(n_ctx), n_kv_req = \(n_kv_req)")

if n_kv_req > n_ctx {
print("error: n_kv_req > n_ctx, the required KV cache size is not big enough")
}

for id in tokens_list {
print(token_to_piece(token: id))
}

// batch = llama_batch_init(512, 0) // done in init()
batch.n_tokens = Int32(tokens_list.count)

for i1 in 0..<batch.n_tokens {
let i = Int(i1)
batch.token[i] = tokens_list[i]
Expand All @@ -87,90 +87,90 @@ actor LlamaContext {
batch.logits[i] = 0
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true

if llama_decode(context, batch) != 0 {
print("llama_decode() failed")
}

n_cur = batch.n_tokens
}

func completion_loop() -> String {
var new_token_id: llama_token = 0

let n_vocab = llama_n_vocab(model)
let logits = llama_get_logits_ith(context, batch.n_tokens - 1)

var candidates = Array<llama_token_data>()
candidates.reserveCapacity(Int(n_vocab))

for token_id in 0..<n_vocab {
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
}
candidates.withUnsafeMutableBufferPointer() { buffer in
var candidates_p = llama_token_data_array(data: buffer.baseAddress, size: buffer.count, sorted: false)

new_token_id = llama_sample_token_greedy(context, &candidates_p)
}

if new_token_id == llama_token_eos(context) || n_cur == n_len {
print("\n")
return ""
}

let new_token_str = token_to_piece(token: new_token_id)
print(new_token_str)
// tokens_list.append(new_token_id)

batch.n_tokens = 0

batch.token[Int(batch.n_tokens)] = new_token_id
batch.pos[Int(batch.n_tokens)] = n_cur
batch.n_seq_id[Int(batch.n_tokens)] = 1
batch.seq_id[Int(batch.n_tokens)]![0] = 0
batch.logits[Int(batch.n_tokens)] = 1 // true
batch.n_tokens += 1

n_decode += 1

n_cur += 1

if llama_decode(context, batch) != 0 {
print("failed to evaluate llama!")
}

return new_token_str
}

func clear() {
tokens_list.removeAll()
}

private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let n_tokens = text.count + (add_bos ? 1 : 0)
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, false)

var swiftTokens: [llama_token] = []
for i in 0..<tokenCount {
swiftTokens.append(tokens[Int(i)])
}

tokens.deallocate()

return swiftTokens
}

private func token_to_piece(token: llama_token) -> String {
let result = UnsafeMutablePointer<Int8>.allocate(capacity: 8)
result.initialize(repeating: Int8(0), count: 8)

let _ = llama_token_to_piece(model, token, result, 8)

let resultStr = String(cString: result)

result.deallocate()

return resultStr
}
}
Loading

0 comments on commit ee07308

Please sign in to comment.