Skip to content

Commit

Permalink
chore(knowledgebase): add support for vector type (#949)
Browse files Browse the repository at this point in the history
* chore(knowledgebase): add support for vector type

---------

Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
  • Loading branch information
krokoko and mergify[bot] authored Feb 12, 2025
1 parent 7b717aa commit 2e8d5cc
Show file tree
Hide file tree
Showing 21 changed files with 542 additions and 217 deletions.
4 changes: 2 additions & 2 deletions .projen/deps.json

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion .projenrc.ts
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ import {
const GITHUB_USER = 'awslabs';
const PUBLICATION_NAMESPACE = 'cdklabs';
const PROJECT_NAME = 'generative-ai-cdk-constructs';
const CDK_VERSION: string = '2.177.0';
const CDK_VERSION: string = '2.178.0';

function camelCaseIt(input: string): string {
// Hypens and dashes to spaces and then CamelCase...
Expand Down
4 changes: 4 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
# CDK Generative AI Constructs V0.1.293 (2025-02-10)

Based on CDK library version 2.178.0

# CDK Generative AI Constructs V0.1.291 (2025-01-26)

Based on CDK library version 2.177.0
Expand Down
2 changes: 1 addition & 1 deletion DEVELOPER_GUIDE.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ Default output format [None]: json
```

- [Node](https://nodejs.org/en) >= v20.9.0
- [AWS CDK](https://github.com/aws/aws-cdk/releases/tag/v2.177.0) >= 2.177.0
- [AWS CDK](https://github.com/aws/aws-cdk/releases/tag/v2.178.0) >= 2.178.0
- [Python](https://www.python.org/downloads/) >=3.9
- [Projen](https://github.com/projen/projen) >= 0.91.5
- [Yarn](https://classic.yarnpkg.com/lang/en/docs/cli/install/) >= 1.22.19
Expand Down
1 change: 1 addition & 0 deletions apidocs/namespaces/bedrock/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
- [SharePointDataSourceAuthType](enumerations/SharePointDataSourceAuthType.md)
- [SharePointObjectType](enumerations/SharePointObjectType.md)
- [TransformationStep](enumerations/TransformationStep.md)
- [VectorType](enumerations/VectorType.md)

## Classes

Expand Down
6 changes: 6 additions & 0 deletions apidocs/namespaces/bedrock/classes/BedrockFoundationModel.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,12 @@ The ARN of the Bedrock invokable abstraction.

***

### supportedVectorType?

> `readonly` `optional` **supportedVectorType**: [`VectorType`](../enumerations/VectorType.md)[]
***

### supportsAgents

> `readonly` **supportsAgents**: `boolean`
Expand Down
28 changes: 28 additions & 0 deletions apidocs/namespaces/bedrock/enumerations/VectorType.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
[**@cdklabs/generative-ai-cdk-constructs**](../../../README.md)

***

[@cdklabs/generative-ai-cdk-constructs](../../../README.md) / [bedrock](../README.md) / VectorType

# Enumeration: VectorType

The data type for the vectors when using a model to convert text into vector embeddings.
The model must support the specified data type for vector embeddings. Floating-point (float32)
is the default data type, and is supported by most models for vector embeddings. See Supported
embeddings models for information on the available models and their vector data types.

## Enumeration Members

### BINARY

> **BINARY**: `"BINARY"`
`BINARY` convert the data to binary vector embeddings (less precise, but less costly).

***

### FLOATING\_POINT

> **FLOATING\_POINT**: `"FLOAT32"`
`FLOATING_POINT` convert the data to floating-point (float32) vector embeddings (more precise, but more costly).
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,14 @@

## Properties

### supportedVectorType?

> `readonly` `optional` **supportedVectorType**: [`VectorType`](../enumerations/VectorType.md)[]
Embeddings models have different supported vector types

***

### supportsAgents?

> `readonly` `optional` **supportsAgents**: `boolean`
Expand Down
14 changes: 14 additions & 0 deletions apidocs/namespaces/bedrock/interfaces/VectorKnowledgeBaseProps.md
Original file line number Diff line number Diff line change
Expand Up @@ -149,3 +149,17 @@ type `VectorCollection`, `RedisEnterpriseVectorStore`,
```ts
- A new OpenSearch Serverless vector collection is created.
```

***

### vectorType?

> `readonly` `optional` **vectorType**: [`VectorType`](../enumerations/VectorType.md)
The vector type to store vector embeddings.

#### Default

```ts
- VectorType.FLOATING_POINT
```
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,12 @@ The OpenSearch Vector Collection.

***

### distanceType

> `readonly` **distanceType**: `string`
***

### indexName

> `readonly` **indexName**: `string`
Expand All @@ -48,6 +54,12 @@ The metadata management fields.

***

### precision

> `readonly` **precision**: `string`
***

### vectorDimensions

> `readonly` **vectorDimensions**: `number`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,8 @@ class AnalyzerProperties(TypedDict):

class VectorIndexProperties(TypedDict):
Endpoint: str
Precision: str
DistanceType: str
IndexName: str
VectorField: str
Dimensions: int | str
Expand All @@ -70,6 +72,10 @@ def validate_event(event: CustomResourceRequest[VectorIndexProperties]) -> bool:
raise ValueError("VectorField is required")
if event["ResourceProperties"]["Dimensions"] is None:
raise ValueError("Dimensions is required")
if event["ResourceProperties"]["Precision"] is None:
raise ValueError("Precision is required")
if event["ResourceProperties"]["DistanceType"] is None:
raise ValueError("DistanceType is required")
if isinstance(int(event["ResourceProperties"]["Dimensions"]), int) is False:
raise ValueError("Dimensions must be an integer")
if event["ResourceProperties"]["MetadataManagement"] is None:
Expand Down Expand Up @@ -125,16 +131,19 @@ def connect_opensearch(endpoint: str) -> OpenSearch:
def create_mapping(
vector_field: str,
dimensions: int,
precision: str,
distance_type: str,
metadata_management: Sequence[MetadataManagementField],
) -> dict:
mapping = {
"properties": {
vector_field: {
"type": "knn_vector",
"dimension": dimensions,
"data_type": precision,
"method": {
"engine": "faiss",
"space_type": "l2",
"space_type": distance_type,
"name": "hnsw",
"parameters": {},
},
Expand Down Expand Up @@ -206,14 +215,16 @@ def handle_create(
index_name: str,
vector_field: str,
dimensions: int,
precision: str,
distance_type: str,
metadata_management: Sequence[MetadataManagementField],
analyzer: AnalyzerProperties | None,
):
if client.indices.exists(index_name):
raise ValueError(f"Index {index_name} already exists")

try:
mapping = create_mapping(vector_field, dimensions, metadata_management)
mapping = create_mapping(vector_field, dimensions, precision, distance_type, metadata_management)
setting = create_setting(analyzer)
create_index(client, index_name, mapping, setting)
except Exception as e:
Expand Down Expand Up @@ -248,6 +259,8 @@ def on_create(
event["ResourceProperties"]["IndexName"],
event["ResourceProperties"]["VectorField"],
int(event["ResourceProperties"]["Dimensions"]),
event["ResourceProperties"]["Precision"],
event["ResourceProperties"]["DistanceType"],
event["ResourceProperties"]["MetadataManagement"],
event["ResourceProperties"].get("Analyzer", None),
)
Expand Down
Loading

0 comments on commit 2e8d5cc

Please sign in to comment.