Skip to content

A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

License

Notifications You must be signed in to change notification settings

awjuliani/pytorch-diffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

This repository contains my attempt at reimplementing the main algorithm and model presenting in Denoising Diffusion Probabilistic Models, the recent paper by Ho et al., 2020. A nice summary of the paper by the authors is available here.

This implementation uses pytorch lightning to limit the boilerplate as much as possible. Due to time and computational constraints, I only experimented with 32x32 image datasets, but it should scale up to larger datasets like LSUN and CelebA as demonstrated in the original paper. This implementation was done for my own self-education, and hopefully it can help others learn as well.

Use the provided entry.ipynb notebook to train model and sample generated images.

Supports MNIST, Fashion-MNIST and CIFAR datasets.

Requirements

  • PyTorch
  • PyTorch-Lightning
  • Torchvision
  • imageio (for gif generation)

Generated Images

MNIST

MNIST Generation

Fashion-MNIST

Fashion MNIST Generation

CIFAR

CIFAR Generation

About

A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published