This repository includes the accompanying code for the paper "An Entangled Mixture of Variational Autoencoders Approach to Deep Clustering". Avi Caciularu and Jacob Goldberger.
We heavily relied on the code from the K-Autoencoders Deep Clustering repository. The instructions are based on the K-Autoencoders Deep Clustering repository, and are modified to support our version.
- Clone this repository.
- cd to the cloned dir
- run
conda create -n k_dae python=3.6
- run
conda activate k_dvae
- run
pip install -r path\to\requirements.txt
python main.py -dn mnist
--dataset_name
- The name of dataset [mnist / fashion / usps] default: mnist--save_dir
- path to output folder. (contains logs and model.)
For additional data or code please contact Avi Caciularu.
If you find our work useful, please cite the paper as:
@article{caciularu2022entangledmixture,
title={An Entangled Mixture of Variational Autoencoders Approach to Deep Clustering},
author={Caciularu, Avi and Goldberger, Jacob},
journal={Neurocomputing},
year={2023},
}