Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Avoid loops in s2fft.sampling.reindex functions to reduce compile and run times #245

Merged
merged 3 commits into from
Nov 26, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 22 additions & 34 deletions s2fft/sampling/reindex.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
from functools import partial

import jax.numpy as jnp
import numpy as np
from jax import jit


@partial(jit, static_argnums=(1))
def flm_1d_to_2d_fast(flm_1d: jnp.ndarray, L: int) -> jnp.ndarray:
r"""
Convert from 1D indexed harmnonic coefficients to 2D indexed coefficients (JAX).
Convert from 1D indexed harmonic coefficients to 2D indexed coefficients (JAX).

Note:
Storage conventions for harmonic coefficients :math:`flm_{(\ell,m)}`, for
Expand Down Expand Up @@ -35,13 +36,12 @@ def flm_1d_to_2d_fast(flm_1d: jnp.ndarray, L: int) -> jnp.ndarray:
jnp.ndarray: 2D indexed harmonic coefficients.

"""
flm_2d = jnp.zeros((L, 2 * L - 1), dtype=jnp.complex128)
els = jnp.arange(L)
offset = els**2 + els
for el in range(L):
m_array = jnp.arange(-el, el + 1)
flm_2d = flm_2d.at[el, L - 1 + m_array].set(flm_1d[offset[el] + m_array])
return flm_2d
flm_2d = jnp.zeros((L, 2 * L - 1), dtype=flm_1d.dtype)
row_indices, col_indices = np.arange(L)[:, None], np.arange(2 * L - 1)[None, :]
el_indices, m_indices = np.where(
(row_indices <= col_indices)[::-1, :] & (row_indices <= col_indices)[::-1, ::-1]
)
return flm_2d.at[el_indices, m_indices].set(flm_1d)


@partial(jit, static_argnums=(1))
Expand Down Expand Up @@ -75,13 +75,11 @@ def flm_2d_to_1d_fast(flm_2d: jnp.ndarray, L: int) -> jnp.ndarray:
jnp.ndarray: 1D indexed harmonic coefficients.

"""
flm_1d = jnp.zeros(L**2, dtype=jnp.complex128)
els = jnp.arange(L)
offset = els**2 + els
for el in range(L):
m_array = jnp.arange(-el, el + 1)
flm_1d = flm_1d.at[offset[el] + m_array].set(flm_2d[el, L - 1 + m_array])
return flm_1d
row_indices, col_indices = np.arange(L)[:, None], np.arange(2 * L - 1)[None, :]
el_indices, m_indices = np.where(
(row_indices <= col_indices)[::-1, :] & (row_indices <= col_indices)[::-1, ::-1]
)
return flm_2d[el_indices, m_indices]


@partial(jit, static_argnums=(1))
Expand Down Expand Up @@ -127,17 +125,13 @@ def flm_hp_to_2d_fast(flm_hp: jnp.ndarray, L: int) -> jnp.ndarray:
jnp.ndarray: 2D indexed harmonic coefficients.

"""
flm_2d = jnp.zeros((L, 2 * L - 1), dtype=jnp.complex128)

for el in range(L):
flm_2d = flm_2d.at[el, L - 1].set(flm_hp[el])
m_array = jnp.arange(1, el + 1)
hp_idx = m_array * (2 * L - 1 - m_array) // 2 + el
flm_2d = flm_2d.at[el, L - 1 + m_array].set(flm_hp[hp_idx])
flm_2d = flm_2d.at[el, L - 1 - m_array].set(
(-1) ** m_array * jnp.conj(flm_hp[hp_idx])
)

flm_2d = jnp.zeros((L, 2 * L - 1), dtype=flm_hp.dtype)
m_indices, el_indices = np.triu_indices(n=L, k=1, m=L) + np.array([[1], [0]])
flm_2d = flm_2d.at[:L, L - 1].set(flm_hp[:L])
flm_2d = flm_2d.at[el_indices, L - 1 + m_indices].set(flm_hp[L:])
flm_2d = flm_2d.at[el_indices, L - 1 - m_indices].set(
(-1) ** m_indices * flm_hp[L:].conj()
)
return flm_2d


Expand Down Expand Up @@ -185,11 +179,5 @@ def flm_2d_to_hp_fast(flm_2d: jnp.ndarray, L: int) -> jnp.ndarray:
jnp.ndarray: HEALPix indexed harmonic coefficients.

"""
flm_hp = jnp.zeros(int(L * (L + 1) / 2), dtype=jnp.complex128)

for el in range(L):
m_array = jnp.arange(el + 1)
hp_idx = m_array * (2 * L - 1 - m_array) // 2 + el
flm_hp = flm_hp.at[hp_idx].set(flm_2d[el, L - 1 + m_array])

return flm_hp
m_indices, el_indices = np.triu_indices(n=L + 1, m=L)
return flm_2d[el_indices, L - 1 + m_indices]
Loading