Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

allow from_pymc3 args to override model values #1249

Merged
merged 4 commits into from
Jun 19, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,7 @@
* loo-pit plot. The kde is computed over the data interval (this could be shorter than [0, 1]). The HDI is computed analitically (#1215)
* Added `html_repr` of InferenceData objects for jupyter notebooks. (#1217)
* Added support for PyJAGS via the function `from_pyjags` in the module arviz.data.io_pyjags. (#1219)
* `from_pymc3` can now retrieve `coords` and `dims` from model context (#1228
and #1240)
* `from_pymc3` can now retrieve `coords` and `dims` from model context (#1228, #1240 and #1249)

### Maintenance and fixes
* Include data from `MultiObservedRV` to `observed_data` when using
Expand Down
15 changes: 8 additions & 7 deletions arviz/data/io_pymc3.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,13 +147,14 @@ def arbitrary_element(dct: Dict[Any, np.ndarray]) -> np.ndarray:
aelem = arbitrary_element(get_from)
self.ndraws = aelem.shape[0]

self.coords = coords
if coords is None and hasattr(self.model, "coords"):
self.coords = self.model.coords

self.dims = dims
if dims is None and hasattr(self.model, "RV_dims"):
self.dims = {k: list(v) for k, v in self.model.RV_dims.items()}
self.coords = {} if coords is None else coords
if hasattr(self.model, "coords"):
self.coords = {**self.model.coords, **self.coords}

self.dims = {} if dims is None else dims
if hasattr(self.model, "RV_dims"):
model_dims = {k: list(v) for k, v in self.model.RV_dims.items()}
self.dims = {**model_dims, **self.dims}

self.observations, self.multi_observations = self.find_observations()

Expand Down
27 changes: 27 additions & 0 deletions arviz/tests/external_tests/test_data_pymc.py
Original file line number Diff line number Diff line change
Expand Up @@ -244,6 +244,33 @@ def test_autodetect_coords_from_model(self, use_context):
np.testing.assert_array_equal(idata.observed_data.coords["date"], coords["date"])
np.testing.assert_array_equal(idata.observed_data.coords["city"], coords["city"])

def test_ovewrite_model_coords_dims(self):
"""Check coords and dims from model object can be partially overwrited."""
dim1 = ["a", "b"]
OriolAbril marked this conversation as resolved.
Show resolved Hide resolved
new_dim1 = ["c", "d"]
coords = {"dim1": dim1, "dim2": ["c1", "c2"]}
x_data = np.arange(4).reshape((2, 2))
y = x_data + np.random.normal(size=(2, 2))
with pm.Model(coords=coords):
x = pm.Data("x", x_data, dims=("dim1", "dim2"))
beta = pm.Normal("beta", 0, 1, dims="dim1")
_ = pm.Normal("obs", x * beta, 1, observed=y, dims=("dim1", "dim2"))
trace = pm.sample(100, tune=100)
idata1 = from_pymc3(trace)
idata2 = from_pymc3(trace, coords={"dim1": new_dim1}, dims={"beta": ["dim2"]})

test_dict = {"posterior": ["beta"], "observed_data": ["obs"], "constant_data": ["x"]}
fails1 = check_multiple_attrs(test_dict, idata1)
assert not fails1
fails2 = check_multiple_attrs(test_dict, idata2)
assert not fails2
assert "dim1" in list(idata1.posterior.beta.dims)
assert "dim2" in list(idata2.posterior.beta.dims)
assert np.all(idata1.constant_data.x.dim1.values == np.array(dim1))
assert np.all(idata1.constant_data.x.dim2.values == np.array(["c1", "c2"]))
assert np.all(idata2.constant_data.x.dim1.values == np.array(new_dim1))
assert np.all(idata2.constant_data.x.dim2.values == np.array(["c1", "c2"]))

def test_missing_data_model(self):
# source pymc3/pymc3/tests/test_missing.py
data = ma.masked_values([1, 2, -1, 4, -1], value=-1)
Expand Down