Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CMSIS-NN] Separated symmetric and asymmetric padding tests for Conv2D #9963

Merged
merged 2 commits into from
Jan 20, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 108 additions & 8 deletions tests/python/contrib/test_cmsisnn/test_conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,22 +124,118 @@ def make_model(


@tvm.testing.requires_cmsisnn
@pytest.mark.parametrize("ifm_shape", [(1, 25, 25, 12), (1, 64, 100, 4)])
@pytest.mark.parametrize("kernel_size", [(5, 5)])
@pytest.mark.parametrize("padding", ["SAME", "VALID"])
@pytest.mark.parametrize("strides, dilation", [((2, 2), (1, 1))])
@pytest.mark.parametrize("relu_type", ["RELU"])
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Make these variables instead of parametrize so it's clear they don't change.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Made the change. Let's see how the checks go.

@pytest.mark.parametrize("enable_bias", [True, False])
@pytest.mark.parametrize(
"input_zero_point, input_scale, kernel_scale, out_channels",
[(10, 0.0128, [0.11, 0.22], 2), (-64, 1, [1, 0.0256, 1.37], 3)],
)
def test_conv2d_int8(
ifm_shape,
kernel_size,
def test_conv2d_symmetric_padding_int8(
padding,
enable_bias,
relu_type,
input_zero_point,
input_scale,
kernel_scale,
out_channels,
):
interface_api = "c"
use_unpacked_api = True
test_runner = AOT_CORSTONE300_RUNNER

ifm_shape = (1, 64, 100, 4)
kernel_size = (3, 3)
strides = (1, 1)
dilation = (1, 1)
dtype = "int8"
groups = 1
weight_format = "HWIO"
kernel_h = kernel_size[0]
kernel_w = kernel_size[1]
kernel_shape = (kernel_h, kernel_w, ifm_shape[3] // groups, out_channels)
kernel_zero_point = 0
in_min, in_max = get_range_for_dtype_str(dtype)

output_scale, output_zero_point = get_conv2d_qnn_params(
kernel_shape,
input_scale,
input_zero_point,
kernel_scale,
kernel_zero_point,
dtype,
dtype,
dtype,
)

model, params = make_model(
ifm_shape,
kernel_shape,
input_zero_point,
input_scale,
kernel_zero_point,
kernel_scale,
output_zero_point,
output_scale,
padding,
strides,
dilation,
groups,
dtype,
dtype,
out_channels,
weight_format,
enable_bias,
relu_type,
)
orig_mod = make_module(model)
cmsisnn_mod = cmsisnn.partition_for_cmsisnn(orig_mod, params)

# validate pattern matching
attrs = [
cmsisnn_mod[var.name_hint].attrs
for var in cmsisnn_mod.get_global_vars()
if cmsisnn_mod[var.name_hint].attrs
]
assert any(attrs), "At least one function with external attributes was expected."

compilers = [
key == "Compiler" and value == "cmsis-nn" for attr in attrs for key, value in attr.items()
]
assert any(compilers), "Module does not contain function for cmsis-nn target."

assert count_num_calls(orig_mod) == count_num_calls(
cmsisnn_mod
), "Number of calls changed during partitioning"

# validate the output
rng = np.random.default_rng(12345)
inputs = {"input": rng.integers(in_min, high=in_max, size=ifm_shape, dtype=dtype)}
output_list = generate_ref_data(orig_mod["main"], inputs, params)
compile_and_run(
AOTTestModel(
module=cmsisnn_mod,
inputs=inputs,
outputs=output_list,
params=params,
output_tolerance=1,
),
test_runner,
interface_api,
use_unpacked_api,
)


@tvm.testing.requires_cmsisnn
@pytest.mark.parametrize("padding", ["SAME", "VALID"])
@pytest.mark.parametrize("relu_type", ["RELU", "NONE"])
@pytest.mark.parametrize("enable_bias", [True, False])
@pytest.mark.parametrize(
"input_zero_point, input_scale, kernel_scale, out_channels",
[(10, 0.0128, [0.11, 0.22], 2), (-64, 1, [1, 0.0256, 1.37], 3)],
)
def test_conv2d_asymmetric_padding_int8(
padding,
strides,
dilation,
enable_bias,
relu_type,
input_zero_point,
Expand All @@ -151,6 +247,10 @@ def test_conv2d_int8(
use_unpacked_api = True
test_runner = AOT_CORSTONE300_RUNNER

ifm_shape = (1, 25, 25, 12)
kernel_size = (5, 5)
strides = (2, 2)
dilation = (1, 1)
dtype = "int8"
groups = 1
weight_format = "HWIO"
Expand Down