Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MetaSchedule][M3c] Update TuneContext, TaskScheduler & Search Strategy Design #9789

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions include/tvm/meta_schedule/cost_model.h
Original file line number Diff line number Diff line change
Expand Up @@ -51,20 +51,20 @@ class CostModelNode : public runtime::Object {

/*!
* \brief Update the cost model given running results.
* \param tune_context The tuning context.
* \param context The tuning context.
* \param candidates The measure candidates.
* \param results The running results of the measure candidates.
*/
virtual void Update(const TuneContext& tune_context, const Array<MeasureCandidate>& candidates,
virtual void Update(const TuneContext& context, const Array<MeasureCandidate>& candidates,
const Array<RunnerResult>& results) = 0;

/*!
* \brief Predict the normalized score (the larger the better) of given measure candidates.
* \param tune_context The tuning context.
* \param context The tuning context.
* \param candidates The measure candidates.
* \return The predicted normalized score.
*/
virtual std::vector<double> Predict(const TuneContext& tune_context,
virtual std::vector<double> Predict(const TuneContext& context,
const Array<MeasureCandidate>& candidates) = 0;

static constexpr const char* _type_key = "meta_schedule.CostModel";
Expand All @@ -86,7 +86,7 @@ class PyCostModelNode : public CostModelNode {
using FSave = runtime::TypedPackedFunc<void(String)>;
/*!
* \brief Update the cost model given running results.
* \param tune_context The tuning context.
* \param context The tuning context.
* \param candidates The measure candidates.
* \param results The running results of the measure candidates.
* \return Whether cost model was updated successfully.
Expand All @@ -95,7 +95,7 @@ class PyCostModelNode : public CostModelNode {
const Array<RunnerResult>&)>;
/*!
* \brief Predict the running results of given measure candidates.
* \param tune_context The tuning context.
* \param context The tuning context.
* \param candidates The measure candidates.
* \param p_addr The address to save the the estimated running results.
*/
Expand Down Expand Up @@ -135,17 +135,17 @@ class PyCostModelNode : public CostModelNode {
ICHECK(f_save != nullptr) << "PyCostModel's Save method not implemented!";
f_save(path);
}
void Update(const TuneContext& tune_context, const Array<MeasureCandidate>& candidates,
void Update(const TuneContext& context, const Array<MeasureCandidate>& candidates,
const Array<RunnerResult>& results) {
ICHECK(f_update != nullptr) << "PyCostModel's Update method not implemented!";
f_update(tune_context, candidates, results);
f_update(context, candidates, results);
}

std::vector<double> Predict(const TuneContext& tune_context,
std::vector<double> Predict(const TuneContext& context,
const Array<MeasureCandidate>& candidates) {
ICHECK(f_predict != nullptr) << "PyCostModel's Predict method not implemented!";
std::vector<double> result(candidates.size(), 0.0);
f_predict(tune_context, candidates, result.data());
f_predict(context, candidates, result.data());
return result;
}

Expand Down
12 changes: 6 additions & 6 deletions include/tvm/meta_schedule/feature_extractor.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,11 +37,11 @@ class FeatureExtractorNode : public runtime::Object {

/*!
* \brief Extract features from the given measure candidate.
* \param tune_context The tuning context for feature extraction.
* \param context The tuning context for feature extraction.
* \param candidates The measure candidates to extract features from.
* \return The feature ndarray extracted.
*/
virtual Array<tvm::runtime::NDArray> ExtractFrom(const TuneContext& tune_context,
virtual Array<tvm::runtime::NDArray> ExtractFrom(const TuneContext& context,
const Array<MeasureCandidate>& candidates) = 0;

static constexpr const char* _type_key = "meta_schedule.FeatureExtractor";
Expand All @@ -53,12 +53,12 @@ class PyFeatureExtractorNode : public FeatureExtractorNode {
public:
/*!
* \brief Extract features from the given measure candidate.
* \param tune_context The tuning context for feature extraction.
* \param context The tuning context for feature extraction.
* \param candidates The measure candidates to extract features from.
* \return The feature ndarray extracted.
*/
using FExtractFrom = runtime::TypedPackedFunc<Array<tvm::runtime::NDArray>(
const TuneContext& tune_context, const Array<MeasureCandidate>& candidates)>;
const TuneContext& context, const Array<MeasureCandidate>& candidates)>;
/*!
* \brief Get the feature extractor as string with name.
* \return The string of the feature extractor.
Expand All @@ -75,10 +75,10 @@ class PyFeatureExtractorNode : public FeatureExtractorNode {
// `f_as_string` is not visited
}

Array<tvm::runtime::NDArray> ExtractFrom(const TuneContext& tune_context,
Array<tvm::runtime::NDArray> ExtractFrom(const TuneContext& context,
const Array<MeasureCandidate>& candidates) {
ICHECK(f_extract_from != nullptr) << "PyFeatureExtractor's ExtractFrom method not implemented!";
return f_extract_from(tune_context, candidates);
return f_extract_from(context, candidates);
}

static constexpr const char* _type_key = "meta_schedule.PyFeatureExtractor";
Expand Down
146 changes: 146 additions & 0 deletions include/tvm/meta_schedule/mutator.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

#ifndef TVM_META_SCHEDULE_MUTATOR_H_
#define TVM_META_SCHEDULE_MUTATOR_H_

#include <tvm/tir/schedule/schedule.h>

namespace tvm {
namespace meta_schedule {

class TuneContext;

/*! \brief Mutator is designed to mutate the trace to explore the design space. */
class MutatorNode : public runtime::Object {
public:
/*! \brief Virtual destructor. */
virtual ~MutatorNode() = default;

void VisitAttrs(tvm::AttrVisitor* v) {}

/*!
* \brief Initialize the design space generator with tuning context.
* \param context The tuning context for initialization.
* \note This method is supposed to be called only once before every other method.
*/
virtual void InitializeWithTuneContext(const TuneContext& context) = 0;

/*!
* \brief Apply the mutator function to the given trace.
* \param trace The given trace for mutation.
* \param rand_state The random state for mutation.
* \return None if mutator failed, otherwise return the mutated trace.
*/
virtual Optional<tir::Trace> Apply(const tir::Trace& trace,
support::LinearCongruentialEngine::TRandState* rand_state) = 0;

static constexpr const char* _type_key = "meta_schedule.Mutator";
TVM_DECLARE_BASE_OBJECT_INFO(MutatorNode, Object);
};

/*! \brief The mutator with customized methods on the python-side. */
class PyMutatorNode : public MutatorNode {
public:
/*!
* \brief The function type of `InitializeWithTuneContext` method.
* \param context The tuning context for initialization.
*/
using FInitializeWithTuneContext = runtime::TypedPackedFunc<void(const TuneContext&)>;
/*!
* \brief Apply the mutator function to the given trace.
* \param trace The given trace for mutation.
* \return None if mutator failed, otherwise return the mutated trace.
*/
using FApply = runtime::TypedPackedFunc<Optional<tir::Trace>(
const tir::Trace&, support::LinearCongruentialEngine::TRandState rand_state)>;
/*!
* \brief Get the mutator as string with name.
* \return The string of the mutator.
*/
using FAsString = runtime::TypedPackedFunc<String()>;

/*! \brief The packed function to the `InitializeWithTuneContext` function. */
FInitializeWithTuneContext f_initialize_with_tune_context;
/*! \brief The packed function to the `Apply` function. */
FApply f_apply;
/*! \brief The packed function to the `AsString` function. */
FAsString f_as_string;

void VisitAttrs(tvm::AttrVisitor* v) {
// `f_initialize_with_tune_context` is not visited
// `f_apply` is not visited
// `f_as_string` is not visited
}

void InitializeWithTuneContext(const TuneContext& context) final {
ICHECK(f_initialize_with_tune_context != nullptr)
<< "PyMutator's InitializeWithTuneContext method not implemented!";
this->f_initialize_with_tune_context(context);
}

Optional<tir::Trace> Apply(const tir::Trace& trace,
support::LinearCongruentialEngine::TRandState* rand_state) final {
ICHECK(f_apply != nullptr) << "PyMutator's Apply method not implemented!";
return this->f_apply(trace, *rand_state);
}

static constexpr const char* _type_key = "meta_schedule.PyMutator";
TVM_DECLARE_FINAL_OBJECT_INFO(PyMutatorNode, MutatorNode);
};

/*!
* \brief Managed reference to MutatorNode
* \sa MutatorNode
*/
class Mutator : public runtime::ObjectRef {
public:
/*! \brief Create a Mutator that mutates the tile size. */
TVM_DLL static Mutator MutateTileSize();
/*!
* \brief Create a Mutator that mutates the parallel extent
* \param max_jobs_per_core The maximum number of parallel jobs per core.
* \return The created mutator.
*/
TVM_DLL static Mutator MutateParallel(int64_t max_jobs_per_core);
/*! \brief Create a Mutator that mutates auto unroll step */
TVM_DLL static Mutator MutateUnroll();
/*!
* \brief Create a Mutator that mutates the outcome of SampleComputeLocation
* \return The mutator created
*/
TVM_DLL static Mutator MutateComputeLocation();
/*!
* \brief Create a mutator with customized methods on the python-side.
* \param f_initialize_with_tune_context The packed function of `InitializeWithTuneContext`.
* \param f_apply The packed function of `Apply`.
* \param f_as_string The packed function of `AsString`.
* \return The mutator created.
*/
TVM_DLL static Mutator PyMutator(
PyMutatorNode::FInitializeWithTuneContext f_initialize_with_tune_context, //
PyMutatorNode::FApply f_apply, //
PyMutatorNode::FAsString f_as_string);
TVM_DEFINE_MUTABLE_OBJECT_REF_METHODS(Mutator, ObjectRef, MutatorNode);
};

} // namespace meta_schedule
} // namespace tvm

#endif // TVM_META_SCHEDULE_MUTATOR_H_
Loading