Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Onnx] Add Adam #9002

Merged
merged 4 commits into from
Sep 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -3631,6 +3631,73 @@ def _impl_v1(cls, inputs, attr, params):
return _expr.TupleWrapper(_expr.Tuple(result), len(result))


class Adam(OnnxOpConverter):
"""Operator converter for Adam op."""

@classmethod
def _impl_v1(cls, inputs, attr, params):
alpha = attr.get("alpha", 0.9)
beta = attr.get("beta", 0.999)

# Note in the docs epsilon default is 0.0 but in the tests it is set to 1e-2:
# https://git.io/Ju5C4
epsilon = attr.get("epsilon", 1e-2)
norm_coefficient = attr.get("norm_coefficient", 0.0)
norm_coefficient_post = attr.get("norm_coefficient_post", 0.0)

R = inputs[0]
T = inputs[1]

assert (
len(inputs) - 2
) % 4 == 0, f"Expect 4-lets for remaining inputs, found {len(inputs) - 2}"

# convert attributes to constants, proper types
dtype_inputs = infer_type(inputs[3]).checked_type.dtype
inverse_alpha = relay.const(1 - alpha, dtype=dtype_inputs)
alpha = relay.const(alpha, dtype=dtype_inputs)
inverse_beta = relay.const(1 - beta, dtype=dtype_inputs)
beta = relay.const(beta, dtype=dtype_inputs)
epsilon = relay.const(epsilon, dtype=dtype_inputs)
norm_coefficient = relay.const(norm_coefficient, dtype=dtype_inputs)
norm_coefficient_post = relay.const(norm_coefficient_post, dtype=dtype_inputs)
one = relay.const(1, dtype=dtype_inputs)
T = relay.cast_like(T, inputs[3])

# Remaining inputs are:
# [x_1, x_2 ..., x_1_grad, x_2_grad, ... x_1_g_accum, x_2_g_accum..., x_1_g_sq_accum, ...]
num_input_tensors = (len(inputs) - 2) // 4
output_tensors = []
output_accumulated_gradients = []
output_accumulated_squared_gradients = []
for i in range(num_input_tensors):
x = inputs[i + 2]
g = inputs[i + 2 + num_input_tensors]
v = inputs[i + 2 + 2 * num_input_tensors]
h = inputs[i + 2 + 3 * num_input_tensors]

g_regularized = norm_coefficient * x + g
v_new = alpha * v + inverse_alpha * g_regularized
h_new = beta * h + inverse_beta * g_regularized * g_regularized
h_sqrt = relay.sqrt(h_new) + epsilon

true_branch = R * relay.sqrt(one - relay.power(beta, T)) / (one - relay.power(alpha, T))
R_adjusted = relay.If(T > relay.const(0, dtype=dtype_inputs), true_branch, R)

x_new = x - R_adjusted * (v_new / h_sqrt)
x_result = (one - norm_coefficient_post) * x_new

output_tensors.append(x_result)
output_accumulated_gradients.append(v_new)
output_accumulated_squared_gradients.append(h_new)

# append lists together to get final result
result = (
output_tensors + output_accumulated_gradients + output_accumulated_squared_gradients
)
return _expr.TupleWrapper(_expr.Tuple(result), len(result))


# compatible operators that do NOT require any conversion.
_identity_list = []

Expand Down Expand Up @@ -3817,6 +3884,7 @@ def _get_convert_map(opset):
# Loss functions / training
"NegativeLogLikelihoodLoss": NegativeLogLikelihoodLoss.get_converter(opset),
"Adagrad": Adagrad.get_converter(opset),
"Adam": Adam.get_converter(opset),
}


Expand Down
2 changes: 0 additions & 2 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -4711,8 +4711,6 @@ def verify_eyelike(indata):
)

unsupported_onnx_tests = [
"test_adam",
"test_adam_multiple",
"test_cast_BFLOAT16_to_FLOAT",
"test_cast_DOUBLE_to_FLOAT16",
"test_cast_FLOAT_to_BFLOAT16",
Expand Down