Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AOT] Added a test for detecting output size post MLF export #13655

Merged
merged 2 commits into from
Jan 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions python/tvm/micro/model_library_format.py
Original file line number Diff line number Diff line change
Expand Up @@ -485,6 +485,12 @@ def _export_graph_model_library_format(
"functions"
]["main"][0]["outputs"][key]

input_name_to_size_map = {
name: property_map["size"] for name, property_map in inputs_sizes.items()
}
output_name_to_size_map = {
name: property_map["size"] for name, property_map in output_sizes.items()
}
generate_c_interface_header(
mod.libmod_name,
inputs,
Expand All @@ -494,8 +500,8 @@ def _export_graph_model_library_format(
devices,
workspace_size,
include_path,
inputs_sizes,
output_sizes,
input_name_to_size_map,
output_name_to_size_map,
)

is_aot = isinstance(mod, executor_factory.AOTExecutorFactoryModule)
Expand Down
57 changes: 57 additions & 0 deletions tests/python/relay/aot/test_crt_aot.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,6 +225,63 @@ def test_packed_global_variables():
assert f"{func}_packed" not in tvmgen_names


def test_io_size_definition():
"""Check network IO size definitions in the codegen output."""
dtype = "float32"
ishape = (1, 32, 14, 14)
wshape = (32, 32, 3, 3)
interface_api = "c"
use_unpacked_api = True

data0 = relay.var("data", shape=ishape, dtype=dtype)
weight0 = relay.var("weight", shape=wshape, dtype=dtype)
out = relay.nn.conv2d(data0, weight0, kernel_size=(3, 3), padding=(1, 1), groups=1)
main_f = relay.Function([data0, weight0], out)
mod = tvm.IRModule()
mod["main"] = main_f
mod = transform.InferType()(mod)

i_data = np.random.uniform(0, 1, ishape).astype(dtype)
w_data = np.random.uniform(0, 1, wshape).astype(dtype)

inputs = OrderedDict([("data", i_data), ("weight", w_data)])

output_list = generate_ref_data(mod, inputs)
compiled_models_list = compile_models(
models=AOTTestModel(module=mod, inputs=inputs, outputs=output_list),
interface_api=interface_api,
use_unpacked_api=use_unpacked_api,
workspace_byte_alignment=8,
enable_op_fusion=True,
pass_config=AOT_DEFAULT_RUNNER.pass_config,
use_runtime_executor=True,
target=tvm.target.Target("c"),
)
dtype_itemsize = np.dtype(dtype).itemsize
ref_input_size = i_data.size * dtype_itemsize
ref_weight_size = w_data.size * dtype_itemsize
ref_output_size = output_list["output"].size * dtype_itemsize
compiled_model = compiled_models_list[0]

tmp_path = utils.tempdir()
base_path = tmp_path.temp_dir

model = compiled_model.model
tar_file = os.path.join(base_path, f"{model.name}.tar")
export_model_library_format(compiled_model.executor_factory, tar_file)
t = tarfile.open(tar_file)
t.extractall(base_path)

header_path = f"{base_path}/codegen/host/include/tvmgen_{model.name}.h"
with open(header_path, "r") as header:
contents = header.readlines()
contents = "".join(map(str, contents))
assert contents.count("_SIZE") == 4
assert f"TVMGEN_DEFAULT_DATA_SIZE {ref_input_size}" in contents
assert f"TVMGEN_DEFAULT_WEIGHT_SIZE {ref_weight_size}" in contents
assert f"TVMGEN_DEFAULT_OUTPUT_SIZE {ref_output_size}" in contents


@parametrize_aot_options
def test_concatenate(interface_api, use_unpacked_api, test_runner):
"""Tests compilation of concatenate"""
Expand Down