-
Notifications
You must be signed in to change notification settings - Fork 3.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
149 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file Use external cudnn utils function | ||
*/ | ||
#include <tvm/runtime/data_type.h> | ||
#include <tvm/runtime/device_api.h> | ||
#include <tvm/runtime/registry.h> | ||
|
||
#include "cudnn_utils.h" | ||
|
||
namespace tvm { | ||
namespace contrib { | ||
|
||
using namespace runtime; | ||
|
||
void ConvolutionBackwardData(int mode, int format, int algo, int dims, int groups, const int pad[], | ||
const int stride[], const int dilation[], DLTensor* x, DLTensor* w, | ||
DLTensor* y, const std::string& conv_dtype) { | ||
CuDNNThreadEntry* entry_ptr = CuDNNThreadEntry::ThreadLocal(); | ||
// Set Mode | ||
entry_ptr->conv_entry.mode = static_cast<cudnnConvolutionMode_t>(mode); | ||
SetConvDescriptors(entry_ptr, format, dims, groups, pad, stride, dilation, x->shape, w->shape, | ||
y->shape, x->dtype, conv_dtype); | ||
// Set Device | ||
entry_ptr->conv_entry.device = x->device; | ||
// Set Algo | ||
entry_ptr->conv_entry.fwd_algo = static_cast<cudnnConvolutionFwdAlgo_t>(algo); | ||
|
||
// Set workspace | ||
size_t workspace_size = 0; | ||
CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( | ||
entry_ptr->handle, entry_ptr->conv_entry.input_desc, entry_ptr->conv_entry.filter_desc, | ||
entry_ptr->conv_entry.conv_desc, entry_ptr->conv_entry.output_desc, | ||
entry_ptr->conv_entry.fwd_algo, &workspace_size)); | ||
entry_ptr->conv_entry.UpdateWorkspace(workspace_size); | ||
CUDNN_CALL(cudnnConvolutionForward( | ||
entry_ptr->handle, CuDNNDataType::GetConst<1>(entry_ptr->conv_entry.data_type), | ||
entry_ptr->conv_entry.input_desc, x->data, entry_ptr->conv_entry.filter_desc, w->data, | ||
entry_ptr->conv_entry.conv_desc, entry_ptr->conv_entry.fwd_algo, | ||
entry_ptr->conv_entry.workspace, workspace_size, | ||
CuDNNDataType::GetConst<0>(entry_ptr->conv_entry.data_type), | ||
entry_ptr->conv_entry.output_desc, y->data)); | ||
} | ||
|
||
void BackwardDataFindAlgo(int format, int dims, int groups, const int pad[], const int stride[], | ||
const int dilation[], const int x_dim[], const int w_dim[], | ||
const int y_dim[], const std::string& data_dtype, | ||
const std::string& conv_dtype, TVMRetValue* ret) { | ||
CuDNNThreadEntry* entry_ptr = CuDNNThreadEntry::ThreadLocal(); | ||
const int full_dims = dims + 2; | ||
std::vector<int64_t> x_dim_int64(full_dims); | ||
std::vector<int64_t> w_dim_int64(full_dims); | ||
std::vector<int64_t> y_dim_int64(full_dims); | ||
for (int i = 0; i < full_dims; ++i) { | ||
x_dim_int64[i] = x_dim[i]; | ||
w_dim_int64[i] = w_dim[i]; | ||
y_dim_int64[i] = y_dim[i]; | ||
} | ||
SetConvDescriptors(entry_ptr, format, dims, groups, pad, stride, dilation, x_dim_int64.data(), | ||
w_dim_int64.data(), y_dim_int64.data(), String2DLDataType(data_dtype), | ||
conv_dtype); | ||
|
||
int returned_algo_count = 0; | ||
cudnnConvolutionFwdAlgoPerf_t perf_results[CUDNN_CONVOLUTION_FWD_ALGO_COUNT]; | ||
CUDNN_CALL(cudnnFindConvolutionForwardAlgorithm( | ||
entry_ptr->handle, entry_ptr->conv_entry.input_desc, entry_ptr->conv_entry.filter_desc, | ||
entry_ptr->conv_entry.conv_desc, entry_ptr->conv_entry.output_desc, | ||
CUDNN_CONVOLUTION_FWD_ALGO_COUNT, &returned_algo_count, perf_results)); | ||
|
||
const std::vector<std::string> fwd_algo_names{"CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM", | ||
"CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", | ||
"CUDNN_CONVOLUTION_FWD_ALGO_GEMM", | ||
"CUDNN_CONVOLUTION_FWD_ALGO_DIRECT", | ||
"CUDNN_CONVOLUTION_FWD_ALGO_FFT", | ||
"CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING", | ||
"CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD", | ||
"CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED"}; | ||
|
||
auto best_algo = perf_results[0].algo; | ||
LOG(INFO) << "\tCUDNN Found " << returned_algo_count << " fwd algorithms, choosing " | ||
<< fwd_algo_names[best_algo]; | ||
for (int i = 0; i < returned_algo_count; ++i) { | ||
LOG(INFO) << "\t\t" << i << ") " << fwd_algo_names[perf_results[i].algo] | ||
<< " - time: " << perf_results[i].time << " ms" | ||
<< ", Memory: " << perf_results[i].memory; | ||
} | ||
|
||
ret[0] = best_algo; | ||
} | ||
|
||
TVM_REGISTER_GLOBAL("tvm.contrib.cudnn.conv2d.backward_data") | ||
.set_body([](TVMArgs args, TVMRetValue* ret) { | ||
int mode = args[0]; | ||
int format = args[1]; | ||
int algo = args[2]; | ||
int pad_v[2], stride_v[2], dilation_v[2]; | ||
for (int i = 0; i < 2; i++) { | ||
pad_v[i] = args[3 + i]; | ||
stride_v[i] = args[5 + i]; | ||
dilation_v[i] = args[7 + i]; | ||
} | ||
DLTensor* x = args[9]; | ||
DLTensor* w = args[10]; | ||
DLTensor* y = args[11]; | ||
std::string conv_dtype = args[12]; | ||
int groups = args[13]; | ||
|
||
ConvolutionBackwardData(mode, format, algo, 2, groups, pad_v, stride_v, dilation_v, x, w, y, | ||
conv_dtype); | ||
}); | ||
|
||
TVM_REGISTER_GLOBAL("tvm.contrib.cudnn.conv.backward_data_find_algo") | ||
.set_body([](TVMArgs args, TVMRetValue* ret) { | ||
int format = args[0]; | ||
int dims = args[1]; | ||
int* pad = static_cast<int*>(static_cast<void*>(args[2])); | ||
int* stride = static_cast<int*>(static_cast<void*>(args[3])); | ||
int* dilation = static_cast<int*>(static_cast<void*>(args[4])); | ||
int* x_dim = static_cast<int*>(static_cast<void*>(args[5])); | ||
int* w_dim = static_cast<int*>(static_cast<void*>(args[6])); | ||
int* y_dim = static_cast<int*>(static_cast<void*>(args[7])); | ||
std::string data_dtype = args[8]; | ||
std::string conv_dtype = args[9]; | ||
int groups = args[10]; | ||
|
||
BackwardDataFindAlgo(format, dims, groups, pad, stride, dilation, x_dim, w_dim, y_dim, | ||
data_dtype, conv_dtype, ret); | ||
}); | ||
|
||
} // namespace contrib | ||
} // namespace tvm |