-
Notifications
You must be signed in to change notification settings - Fork 28.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[SPARK-22036][SQL] Decimal multiplication with high precision/scale often returns NULL #20023
Changes from all commits
3037d4a
6701a54
20616fd
ecd6a2a
cb62433
77e445f
519571d
1f36cf6
1ff819d
c1c5781
3e79a07
090659f
cf3b372
03644fe
7653e6d
2b66098
b4b0350
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -21,6 +21,7 @@ import org.apache.spark.sql.catalyst.expressions._ | |
import org.apache.spark.sql.catalyst.expressions.Literal._ | ||
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan | ||
import org.apache.spark.sql.catalyst.rules.Rule | ||
import org.apache.spark.sql.internal.SQLConf | ||
import org.apache.spark.sql.types._ | ||
|
||
|
||
|
@@ -42,8 +43,10 @@ import org.apache.spark.sql.types._ | |
* e1 / e2 p1 - s1 + s2 + max(6, s1 + p2 + 1) max(6, s1 + p2 + 1) | ||
* e1 % e2 min(p1-s1, p2-s2) + max(s1, s2) max(s1, s2) | ||
* e1 union e2 max(s1, s2) + max(p1-s1, p2-s2) max(s1, s2) | ||
* sum(e1) p1 + 10 s1 | ||
* avg(e1) p1 + 4 s1 + 4 | ||
* | ||
* When `spark.sql.decimalOperations.allowPrecisionLoss` is set to true, if the precision / scale | ||
* needed are out of the range of available values, the scale is reduced up to 6, in order to | ||
* prevent the truncation of the integer part of the decimals. | ||
* | ||
* To implement the rules for fixed-precision types, we introduce casts to turn them to unlimited | ||
* precision, do the math on unlimited-precision numbers, then introduce casts back to the | ||
|
@@ -56,6 +59,7 @@ import org.apache.spark.sql.types._ | |
* - INT gets turned into DECIMAL(10, 0) | ||
* - LONG gets turned into DECIMAL(20, 0) | ||
* - FLOAT and DOUBLE cause fixed-length decimals to turn into DOUBLE | ||
* - Literals INT and LONG get turned into DECIMAL with the precision strictly needed by the value | ||
*/ | ||
// scalastyle:on | ||
object DecimalPrecision extends TypeCoercionRule { | ||
|
@@ -93,41 +97,76 @@ object DecimalPrecision extends TypeCoercionRule { | |
case e: BinaryArithmetic if e.left.isInstanceOf[PromotePrecision] => e | ||
|
||
case Add(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) => | ||
val dt = DecimalType.bounded(max(s1, s2) + max(p1 - s1, p2 - s2) + 1, max(s1, s2)) | ||
CheckOverflow(Add(promotePrecision(e1, dt), promotePrecision(e2, dt)), dt) | ||
val resultScale = max(s1, s2) | ||
val resultType = if (SQLConf.get.decimalOperationsAllowPrecisionLoss) { | ||
DecimalType.adjustPrecisionScale(max(p1 - s1, p2 - s2) + resultScale + 1, | ||
resultScale) | ||
} else { | ||
DecimalType.bounded(max(p1 - s1, p2 - s2) + resultScale + 1, resultScale) | ||
} | ||
CheckOverflow(Add(promotePrecision(e1, resultType), promotePrecision(e2, resultType)), | ||
resultType) | ||
|
||
case Subtract(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) => | ||
val dt = DecimalType.bounded(max(s1, s2) + max(p1 - s1, p2 - s2) + 1, max(s1, s2)) | ||
CheckOverflow(Subtract(promotePrecision(e1, dt), promotePrecision(e2, dt)), dt) | ||
val resultScale = max(s1, s2) | ||
val resultType = if (SQLConf.get.decimalOperationsAllowPrecisionLoss) { | ||
DecimalType.adjustPrecisionScale(max(p1 - s1, p2 - s2) + resultScale + 1, | ||
resultScale) | ||
} else { | ||
DecimalType.bounded(max(p1 - s1, p2 - s2) + resultScale + 1, resultScale) | ||
} | ||
CheckOverflow(Subtract(promotePrecision(e1, resultType), promotePrecision(e2, resultType)), | ||
resultType) | ||
|
||
case Multiply(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) => | ||
val resultType = DecimalType.bounded(p1 + p2 + 1, s1 + s2) | ||
val resultType = if (SQLConf.get.decimalOperationsAllowPrecisionLoss) { | ||
DecimalType.adjustPrecisionScale(p1 + p2 + 1, s1 + s2) | ||
} else { | ||
DecimalType.bounded(p1 + p2 + 1, s1 + s2) | ||
} | ||
val widerType = widerDecimalType(p1, s1, p2, s2) | ||
CheckOverflow(Multiply(promotePrecision(e1, widerType), promotePrecision(e2, widerType)), | ||
resultType) | ||
|
||
case Divide(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) => | ||
var intDig = min(DecimalType.MAX_SCALE, p1 - s1 + s2) | ||
var decDig = min(DecimalType.MAX_SCALE, max(6, s1 + p2 + 1)) | ||
val diff = (intDig + decDig) - DecimalType.MAX_SCALE | ||
if (diff > 0) { | ||
decDig -= diff / 2 + 1 | ||
intDig = DecimalType.MAX_SCALE - decDig | ||
val resultType = if (SQLConf.get.decimalOperationsAllowPrecisionLoss) { | ||
// Precision: p1 - s1 + s2 + max(6, s1 + p2 + 1) | ||
// Scale: max(6, s1 + p2 + 1) | ||
val intDig = p1 - s1 + s2 | ||
val scale = max(DecimalType.MINIMUM_ADJUSTED_SCALE, s1 + p2 + 1) | ||
val prec = intDig + scale | ||
DecimalType.adjustPrecisionScale(prec, scale) | ||
} else { | ||
var intDig = min(DecimalType.MAX_SCALE, p1 - s1 + s2) | ||
var decDig = min(DecimalType.MAX_SCALE, max(6, s1 + p2 + 1)) | ||
val diff = (intDig + decDig) - DecimalType.MAX_SCALE | ||
if (diff > 0) { | ||
decDig -= diff / 2 + 1 | ||
intDig = DecimalType.MAX_SCALE - decDig | ||
} | ||
DecimalType.bounded(intDig + decDig, decDig) | ||
} | ||
val resultType = DecimalType.bounded(intDig + decDig, decDig) | ||
val widerType = widerDecimalType(p1, s1, p2, s2) | ||
CheckOverflow(Divide(promotePrecision(e1, widerType), promotePrecision(e2, widerType)), | ||
resultType) | ||
|
||
case Remainder(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) => | ||
val resultType = DecimalType.bounded(min(p1 - s1, p2 - s2) + max(s1, s2), max(s1, s2)) | ||
val resultType = if (SQLConf.get.decimalOperationsAllowPrecisionLoss) { | ||
DecimalType.adjustPrecisionScale(min(p1 - s1, p2 - s2) + max(s1, s2), max(s1, s2)) | ||
} else { | ||
DecimalType.bounded(min(p1 - s1, p2 - s2) + max(s1, s2), max(s1, s2)) | ||
} | ||
// resultType may have lower precision, so we cast them into wider type first. | ||
val widerType = widerDecimalType(p1, s1, p2, s2) | ||
CheckOverflow(Remainder(promotePrecision(e1, widerType), promotePrecision(e2, widerType)), | ||
resultType) | ||
|
||
case Pmod(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) => | ||
val resultType = DecimalType.bounded(min(p1 - s1, p2 - s2) + max(s1, s2), max(s1, s2)) | ||
val resultType = if (SQLConf.get.decimalOperationsAllowPrecisionLoss) { | ||
DecimalType.adjustPrecisionScale(min(p1 - s1, p2 - s2) + max(s1, s2), max(s1, s2)) | ||
} else { | ||
DecimalType.bounded(min(p1 - s1, p2 - s2) + max(s1, s2), max(s1, s2)) | ||
} | ||
// resultType may have lower precision, so we cast them into wider type first. | ||
val widerType = widerDecimalType(p1, s1, p2, s2) | ||
CheckOverflow(Pmod(promotePrecision(e1, widerType), promotePrecision(e2, widerType)), | ||
|
@@ -137,9 +176,6 @@ object DecimalPrecision extends TypeCoercionRule { | |
e2 @ DecimalType.Expression(p2, s2)) if p1 != p2 || s1 != s2 => | ||
val resultType = widerDecimalType(p1, s1, p2, s2) | ||
b.makeCopy(Array(Cast(e1, resultType), Cast(e2, resultType))) | ||
|
||
// TODO: MaxOf, MinOf, etc might want other rules | ||
// SUM and AVERAGE are handled by the implementations of those expressions | ||
} | ||
|
||
/** | ||
|
@@ -243,17 +279,35 @@ object DecimalPrecision extends TypeCoercionRule { | |
// Promote integers inside a binary expression with fixed-precision decimals to decimals, | ||
// and fixed-precision decimals in an expression with floats / doubles to doubles | ||
case b @ BinaryOperator(left, right) if left.dataType != right.dataType => | ||
(left.dataType, right.dataType) match { | ||
case (t: IntegralType, DecimalType.Fixed(p, s)) => | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. nit: I feel it's more readable to just put the new cases for literal before these 4 cases. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. unfortunately this is not really feasible since we match on different thigs: here we match on There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. we can do
|
||
b.makeCopy(Array(Cast(left, DecimalType.forType(t)), right)) | ||
case (DecimalType.Fixed(p, s), t: IntegralType) => | ||
b.makeCopy(Array(left, Cast(right, DecimalType.forType(t)))) | ||
case (t, DecimalType.Fixed(p, s)) if isFloat(t) => | ||
b.makeCopy(Array(left, Cast(right, DoubleType))) | ||
case (DecimalType.Fixed(p, s), t) if isFloat(t) => | ||
b.makeCopy(Array(Cast(left, DoubleType), right)) | ||
case _ => | ||
b | ||
(left, right) match { | ||
// Promote literal integers inside a binary expression with fixed-precision decimals to | ||
// decimals. The precision and scale are the ones strictly needed by the integer value. | ||
// Requiring more precision than necessary may lead to a useless loss of precision. | ||
// Consider the following example: multiplying a column which is DECIMAL(38, 18) by 2. | ||
// If we use the default precision and scale for the integer type, 2 is considered a | ||
// DECIMAL(10, 0). According to the rules, the result would be DECIMAL(38 + 10 + 1, 18), | ||
// which is out of range and therefore it will becomes DECIMAL(38, 7), leading to | ||
// potentially loosing 11 digits of the fractional part. Using only the precision needed | ||
// by the Literal, instead, the result would be DECIMAL(38 + 1 + 1, 18), which would | ||
// become DECIMAL(38, 16), safely having a much lower precision loss. | ||
case (l: Literal, r) if r.dataType.isInstanceOf[DecimalType] | ||
&& l.dataType.isInstanceOf[IntegralType] => | ||
b.makeCopy(Array(Cast(l, DecimalType.fromLiteral(l)), r)) | ||
case (l, r: Literal) if l.dataType.isInstanceOf[DecimalType] | ||
&& r.dataType.isInstanceOf[IntegralType] => | ||
b.makeCopy(Array(l, Cast(r, DecimalType.fromLiteral(r)))) | ||
// Promote integers inside a binary expression with fixed-precision decimals to decimals, | ||
// and fixed-precision decimals in an expression with floats / doubles to doubles | ||
case (l @ IntegralType(), r @ DecimalType.Expression(_, _)) => | ||
b.makeCopy(Array(Cast(l, DecimalType.forType(l.dataType)), r)) | ||
case (l @ DecimalType.Expression(_, _), r @ IntegralType()) => | ||
b.makeCopy(Array(l, Cast(r, DecimalType.forType(r.dataType)))) | ||
case (l, r @ DecimalType.Expression(_, _)) if isFloat(l.dataType) => | ||
b.makeCopy(Array(l, Cast(r, DoubleType))) | ||
case (l @ DecimalType.Expression(_, _), r) if isFloat(r.dataType) => | ||
b.makeCopy(Array(Cast(l, DoubleType), r)) | ||
case _ => b | ||
} | ||
} | ||
|
||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -1048,6 +1048,16 @@ object SQLConf { | |
.booleanConf | ||
.createWithDefault(true) | ||
|
||
val DECIMAL_OPERATIONS_ALLOW_PREC_LOSS = | ||
buildConf("spark.sql.decimalOperations.allowPrecisionLoss") | ||
.internal() | ||
.doc("When true (default), establishing the result type of an arithmetic operation " + | ||
"happens according to Hive behavior and SQL ANSI 2011 specification, ie. rounding the " + | ||
"decimal part of the result if an exact representation is not possible. Otherwise, NULL " + | ||
"is returned in those cases, as previously.") | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yeah. This is better. |
||
.booleanConf | ||
.createWithDefault(true) | ||
|
||
val SQL_STRING_REDACTION_PATTERN = | ||
ConfigBuilder("spark.sql.redaction.string.regex") | ||
.doc("Regex to decide which parts of strings produced by Spark contain sensitive " + | ||
|
@@ -1423,6 +1433,8 @@ class SQLConf extends Serializable with Logging { | |
|
||
def replaceExceptWithFilter: Boolean = getConf(REPLACE_EXCEPT_WITH_FILTER) | ||
|
||
def decimalOperationsAllowPrecisionLoss: Boolean = getConf(DECIMAL_OPERATIONS_ALLOW_PREC_LOSS) | ||
|
||
def continuousStreamingExecutorQueueSize: Int = getConf(CONTINUOUS_STREAMING_EXECUTOR_QUEUE_SIZE) | ||
|
||
def continuousStreamingExecutorPollIntervalMs: Long = | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -23,7 +23,7 @@ import scala.reflect.runtime.universe.typeTag | |
|
||
import org.apache.spark.annotation.InterfaceStability | ||
import org.apache.spark.sql.AnalysisException | ||
import org.apache.spark.sql.catalyst.expressions.Expression | ||
import org.apache.spark.sql.catalyst.expressions.{Expression, Literal} | ||
|
||
|
||
/** | ||
|
@@ -117,6 +117,7 @@ object DecimalType extends AbstractDataType { | |
val MAX_SCALE = 38 | ||
val SYSTEM_DEFAULT: DecimalType = DecimalType(MAX_PRECISION, 18) | ||
val USER_DEFAULT: DecimalType = DecimalType(10, 0) | ||
val MINIMUM_ADJUSTED_SCALE = 6 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Before naming a conf, I need to understand the rule you are following. https://docs.microsoft.com/en-us/sql/t-sql/data-types/precision-scale-and-length-transact-sql The SQL Server only applies There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes, I followed Hive's implementation which works like this and applies this 6 digits minimum to all operations. This means that SQLServer allows to round more digits than us in those cases, ie. we ensure at least 6 digits for the scale, while SQLServer doesn't. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @gatorsmile what about There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. how about There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We should make it an internal conf and remove it after some releases. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. ok, I'll go with that, thanks @cloud-fan. |
||
|
||
// The decimal types compatible with other numeric types | ||
private[sql] val ByteDecimal = DecimalType(3, 0) | ||
|
@@ -136,10 +137,52 @@ object DecimalType extends AbstractDataType { | |
case DoubleType => DoubleDecimal | ||
} | ||
|
||
private[sql] def fromLiteral(literal: Literal): DecimalType = literal.value match { | ||
case v: Short => fromBigDecimal(BigDecimal(v)) | ||
case v: Int => fromBigDecimal(BigDecimal(v)) | ||
case v: Long => fromBigDecimal(BigDecimal(v)) | ||
case _ => forType(literal.dataType) | ||
} | ||
|
||
private[sql] def fromBigDecimal(d: BigDecimal): DecimalType = { | ||
DecimalType(Math.max(d.precision, d.scale), d.scale) | ||
} | ||
|
||
private[sql] def bounded(precision: Int, scale: Int): DecimalType = { | ||
DecimalType(min(precision, MAX_PRECISION), min(scale, MAX_SCALE)) | ||
} | ||
|
||
/** | ||
* Scale adjustment implementation is based on Hive's one, which is itself inspired to | ||
* SQLServer's one. In particular, when a result precision is greater than | ||
* {@link #MAX_PRECISION}, the corresponding scale is reduced to prevent the integral part of a | ||
* result from being truncated. | ||
* | ||
* This method is used only when `spark.sql.decimalOperations.allowPrecisionLoss` is set to true. | ||
*/ | ||
private[sql] def adjustPrecisionScale(precision: Int, scale: Int): DecimalType = { | ||
// Assumptions: | ||
assert(precision >= scale) | ||
assert(scale >= 0) | ||
|
||
if (precision <= MAX_PRECISION) { | ||
// Adjustment only needed when we exceed max precision | ||
DecimalType(precision, scale) | ||
} else { | ||
// Precision/scale exceed maximum precision. Result must be adjusted to MAX_PRECISION. | ||
val intDigits = precision - scale | ||
// If original scale is less than MINIMUM_ADJUSTED_SCALE, use original scale value; otherwise | ||
// preserve at least MINIMUM_ADJUSTED_SCALE fractional digits | ||
val minScaleValue = Math.min(scale, MINIMUM_ADJUSTED_SCALE) | ||
// The resulting scale is the maximum between what is available without causing a loss of | ||
// digits for the integer part of the decimal and the minimum guaranteed scale, which is | ||
// computed above | ||
val adjustedScale = Math.max(MAX_PRECISION - intDigits, minScaleValue) | ||
|
||
DecimalType(MAX_PRECISION, adjustedScale) | ||
} | ||
} | ||
|
||
override private[sql] def defaultConcreteType: DataType = SYSTEM_DEFAULT | ||
|
||
override private[sql] def acceptsType(other: DataType): Boolean = { | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This is an example.
adjustPrecisionScale
is also be applied for all the operations. However, the doc shows the adjustment is only applicable to multiplication and division.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
yes, that may be a difference indeed. But I think it is a minor one, since 99% of the cases the precision is exceeded only in multiplications and divisions.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We need to make a decision. You know, we try our best to keep our rule as stable as possible.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'm ok to do the adjustment for all operations, which is same as Hive.