Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-21275][ML] Update GLM test to use supportedFamilyNames #18495

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -749,15 +749,15 @@ class GeneralizedLinearRegressionSuite
library(statmod)
y <- c(1.0, 0.5, 0.7, 0.3)
w <- c(1, 2, 3, 4)
for (fam in list(gaussian(), poisson(), binomial(), Gamma(), tweedie(1.6))) {
for (fam in list(binomial(), Gamma(), gaussian(), poisson(), tweedie(1.6))) {
model1 <- glm(y ~ 1, family = fam)
model2 <- glm(y ~ 1, family = fam, weights = w)
print(as.vector(c(coef(model1), coef(model2))))
}
[1] 0.625 0.530
[1] -0.4700036 -0.6348783
[1] 0.5108256 0.1201443
[1] 1.600000 1.886792
[1] 0.625 0.530
[1] -0.4700036 -0.6348783
[1] 1.325782 1.463641
*/

Expand All @@ -768,13 +768,13 @@ class GeneralizedLinearRegressionSuite
Instance(0.3, 4.0, Vectors.zeros(0))
).toDF()

val expected = Seq(0.625, 0.530, -0.4700036, -0.6348783, 0.5108256, 0.1201443,
1.600000, 1.886792, 1.325782, 1.463641)
val expected = Seq(0.5108256, 0.1201443, 1.600000, 1.886792, 0.625, 0.530,
-0.4700036, -0.6348783, 1.325782, 1.463641)

import GeneralizedLinearRegression._

var idx = 0
for (family <- Seq("gaussian", "poisson", "binomial", "gamma", "tweedie")) {
for (family <- GeneralizedLinearRegression.supportedFamilyNames.sortWith(_ < _)) {
for (useWeight <- Seq(false, true)) {
val trainer = new GeneralizedLinearRegression().setFamily(family)
if (useWeight) trainer.setWeightCol("weight")
Expand Down Expand Up @@ -807,7 +807,7 @@ class GeneralizedLinearRegressionSuite
0.5, 2.1, 0.5, 1.0, 2.0,
0.9, 0.4, 1.0, 2.0, 1.0,
0.7, 0.7, 0.0, 3.0, 3.0), 4, 5, byrow = TRUE))
families <- list(gaussian, binomial, poisson, Gamma, tweedie(1.5))
families <- list(binomial, Gamma, gaussian, poisson, tweedie(1.5))
f1 <- V1 ~ -1 + V4 + V5
f2 <- V1 ~ V4 + V5
for (f in c(f1, f2)) {
Expand All @@ -816,15 +816,15 @@ class GeneralizedLinearRegressionSuite
print(as.vector(coef(model)))
}
}
[1] 0.5169222 -0.3344444
[1] 0.9419107 -0.6864404
[1] 0.1812436 -0.6568422
[1] -0.2869094 0.7857710
[1] 0.5169222 -0.3344444
[1] 0.1812436 -0.6568422
[1] 0.1055254 0.2979113
[1] -0.05990345 0.53188982 -0.32118415
[1] -0.2147117 0.9911750 -0.6356096
[1] -1.5616130 0.6646470 -0.3192581
[1] 0.3390397 -0.3406099 0.6870259
[1] -0.05990345 0.53188982 -0.32118415
[1] -1.5616130 0.6646470 -0.3192581
[1] 0.3665034 0.1039416 0.1484616
*/
val dataset = Seq(
Expand All @@ -835,23 +835,22 @@ class GeneralizedLinearRegressionSuite
).toDF()

val expected = Seq(
Vectors.dense(0, 0.5169222, -0.3344444),
Vectors.dense(0, 0.9419107, -0.6864404),
Vectors.dense(0, 0.1812436, -0.6568422),
Vectors.dense(0, -0.2869094, 0.785771),
Vectors.dense(0, 0.5169222, -0.3344444),
Vectors.dense(0, 0.1812436, -0.6568422),
Vectors.dense(0, 0.1055254, 0.2979113),
Vectors.dense(-0.05990345, 0.53188982, -0.32118415),
Vectors.dense(-0.2147117, 0.991175, -0.6356096),
Vectors.dense(-1.561613, 0.664647, -0.3192581),
Vectors.dense(0.3390397, -0.3406099, 0.6870259),
Vectors.dense(-0.05990345, 0.53188982, -0.32118415),
Vectors.dense(-1.561613, 0.664647, -0.3192581),
Vectors.dense(0.3665034, 0.1039416, 0.1484616))

import GeneralizedLinearRegression._

var idx = 0

for (fitIntercept <- Seq(false, true)) {
for (family <- Seq("gaussian", "binomial", "poisson", "gamma", "tweedie")) {
for (family <- GeneralizedLinearRegression.supportedFamilyNames.sortWith(_ < _)) {
val trainer = new GeneralizedLinearRegression().setFamily(family)
.setFitIntercept(fitIntercept).setOffsetCol("offset")
.setWeightCol("weight").setLinkPredictionCol("linkPrediction")
Expand Down