Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARK-20980] [SQL] Rename wholeFile to multiLine for both CSV and JSON #18202

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions R/pkg/R/SQLContext.R
Original file line number Diff line number Diff line change
Expand Up @@ -334,7 +334,7 @@ setMethod("toDF", signature(x = "RDD"),
#'
#' Loads a JSON file, returning the result as a SparkDataFrame
#' By default, (\href{http://jsonlines.org/}{JSON Lines text format or newline-delimited JSON}
#' ) is supported. For JSON (one record per file), set a named property \code{wholeFile} to
#' ) is supported. For JSON (one record per file), set a named property \code{multiLine} to
#' \code{TRUE}.
#' It goes through the entire dataset once to determine the schema.
#'
Expand All @@ -348,7 +348,7 @@ setMethod("toDF", signature(x = "RDD"),
#' sparkR.session()
#' path <- "path/to/file.json"
#' df <- read.json(path)
#' df <- read.json(path, wholeFile = TRUE)
#' df <- read.json(path, multiLine = TRUE)
#' df <- jsonFile(path)
#' }
#' @name read.json
Expand Down Expand Up @@ -598,7 +598,7 @@ tableToDF <- function(tableName) {
#' df1 <- read.df("path/to/file.json", source = "json")
#' schema <- structType(structField("name", "string"),
#' structField("info", "map<string,double>"))
#' df2 <- read.df(mapTypeJsonPath, "json", schema, wholeFile = TRUE)
#' df2 <- read.df(mapTypeJsonPath, "json", schema, multiLine = TRUE)
#' df3 <- loadDF("data/test_table", "parquet", mergeSchema = "true")
#' }
#' @name read.df
Expand Down
14 changes: 7 additions & 7 deletions python/pyspark/sql/readwriter.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,12 +174,12 @@ def json(self, path, schema=None, primitivesAsString=None, prefersDecimal=None,
allowComments=None, allowUnquotedFieldNames=None, allowSingleQuotes=None,
allowNumericLeadingZero=None, allowBackslashEscapingAnyCharacter=None,
mode=None, columnNameOfCorruptRecord=None, dateFormat=None, timestampFormat=None,
wholeFile=None):
multiLine=None):
"""
Loads JSON files and returns the results as a :class:`DataFrame`.

`JSON Lines <http://jsonlines.org/>`_ (newline-delimited JSON) is supported by default.
For JSON (one record per file), set the ``wholeFile`` parameter to ``true``.
For JSON (one record per file), set the ``multiLine`` parameter to ``true``.

If the ``schema`` parameter is not specified, this function goes
through the input once to determine the input schema.
Expand Down Expand Up @@ -230,7 +230,7 @@ def json(self, path, schema=None, primitivesAsString=None, prefersDecimal=None,
formats follow the formats at ``java.text.SimpleDateFormat``.
This applies to timestamp type. If None is set, it uses the
default value, ``yyyy-MM-dd'T'HH:mm:ss.SSSXXX``.
:param wholeFile: parse one record, which may span multiple lines, per file. If None is
:param multiLine: parse one record, which may span multiple lines, per file. If None is
set, it uses the default value, ``false``.

>>> df1 = spark.read.json('python/test_support/sql/people.json')
Expand All @@ -248,7 +248,7 @@ def json(self, path, schema=None, primitivesAsString=None, prefersDecimal=None,
allowSingleQuotes=allowSingleQuotes, allowNumericLeadingZero=allowNumericLeadingZero,
allowBackslashEscapingAnyCharacter=allowBackslashEscapingAnyCharacter,
mode=mode, columnNameOfCorruptRecord=columnNameOfCorruptRecord, dateFormat=dateFormat,
timestampFormat=timestampFormat, wholeFile=wholeFile)
timestampFormat=timestampFormat, multiLine=multiLine)
if isinstance(path, basestring):
path = [path]
if type(path) == list:
Expand Down Expand Up @@ -322,7 +322,7 @@ def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=Non
ignoreTrailingWhiteSpace=None, nullValue=None, nanValue=None, positiveInf=None,
negativeInf=None, dateFormat=None, timestampFormat=None, maxColumns=None,
maxCharsPerColumn=None, maxMalformedLogPerPartition=None, mode=None,
columnNameOfCorruptRecord=None, wholeFile=None):
columnNameOfCorruptRecord=None, multiLine=None):
"""Loads a CSV file and returns the result as a :class:`DataFrame`.

This function will go through the input once to determine the input schema if
Expand Down Expand Up @@ -396,7 +396,7 @@ def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=Non
``spark.sql.columnNameOfCorruptRecord``. If None is set,
it uses the value specified in
``spark.sql.columnNameOfCorruptRecord``.
:param wholeFile: parse records, which may span multiple lines. If None is
:param multiLine: parse records, which may span multiple lines. If None is
set, it uses the default value, ``false``.

>>> df = spark.read.csv('python/test_support/sql/ages.csv')
Expand All @@ -411,7 +411,7 @@ def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=Non
dateFormat=dateFormat, timestampFormat=timestampFormat, maxColumns=maxColumns,
maxCharsPerColumn=maxCharsPerColumn,
maxMalformedLogPerPartition=maxMalformedLogPerPartition, mode=mode,
columnNameOfCorruptRecord=columnNameOfCorruptRecord, wholeFile=wholeFile)
columnNameOfCorruptRecord=columnNameOfCorruptRecord, multiLine=multiLine)
if isinstance(path, basestring):
path = [path]
return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path)))
Expand Down
14 changes: 7 additions & 7 deletions python/pyspark/sql/streaming.py
Original file line number Diff line number Diff line change
Expand Up @@ -401,12 +401,12 @@ def json(self, path, schema=None, primitivesAsString=None, prefersDecimal=None,
allowComments=None, allowUnquotedFieldNames=None, allowSingleQuotes=None,
allowNumericLeadingZero=None, allowBackslashEscapingAnyCharacter=None,
mode=None, columnNameOfCorruptRecord=None, dateFormat=None, timestampFormat=None,
wholeFile=None):
multiLine=None):
"""
Loads a JSON file stream and returns the results as a :class:`DataFrame`.

`JSON Lines <http://jsonlines.org/>`_ (newline-delimited JSON) is supported by default.
For JSON (one record per file), set the ``wholeFile`` parameter to ``true``.
For JSON (one record per file), set the ``multiLine`` parameter to ``true``.

If the ``schema`` parameter is not specified, this function goes
through the input once to determine the input schema.
Expand Down Expand Up @@ -458,7 +458,7 @@ def json(self, path, schema=None, primitivesAsString=None, prefersDecimal=None,
formats follow the formats at ``java.text.SimpleDateFormat``.
This applies to timestamp type. If None is set, it uses the
default value, ``yyyy-MM-dd'T'HH:mm:ss.SSSXXX``.
:param wholeFile: parse one record, which may span multiple lines, per file. If None is
:param multiLine: parse one record, which may span multiple lines, per file. If None is
set, it uses the default value, ``false``.

>>> json_sdf = spark.readStream.json(tempfile.mkdtemp(), schema = sdf_schema)
Expand All @@ -473,7 +473,7 @@ def json(self, path, schema=None, primitivesAsString=None, prefersDecimal=None,
allowSingleQuotes=allowSingleQuotes, allowNumericLeadingZero=allowNumericLeadingZero,
allowBackslashEscapingAnyCharacter=allowBackslashEscapingAnyCharacter,
mode=mode, columnNameOfCorruptRecord=columnNameOfCorruptRecord, dateFormat=dateFormat,
timestampFormat=timestampFormat, wholeFile=wholeFile)
timestampFormat=timestampFormat, multiLine=multiLine)
if isinstance(path, basestring):
return self._df(self._jreader.json(path))
else:
Expand Down Expand Up @@ -532,7 +532,7 @@ def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=Non
ignoreTrailingWhiteSpace=None, nullValue=None, nanValue=None, positiveInf=None,
negativeInf=None, dateFormat=None, timestampFormat=None, maxColumns=None,
maxCharsPerColumn=None, maxMalformedLogPerPartition=None, mode=None,
columnNameOfCorruptRecord=None, wholeFile=None):
columnNameOfCorruptRecord=None, multiLine=None):
"""Loads a CSV file stream and returns the result as a :class:`DataFrame`.

This function will go through the input once to determine the input schema if
Expand Down Expand Up @@ -607,7 +607,7 @@ def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=Non
``spark.sql.columnNameOfCorruptRecord``. If None is set,
it uses the value specified in
``spark.sql.columnNameOfCorruptRecord``.
:param wholeFile: parse one record, which may span multiple lines. If None is
:param multiLine: parse one record, which may span multiple lines. If None is
set, it uses the default value, ``false``.

>>> csv_sdf = spark.readStream.csv(tempfile.mkdtemp(), schema = sdf_schema)
Expand All @@ -624,7 +624,7 @@ def csv(self, path, schema=None, sep=None, encoding=None, quote=None, escape=Non
dateFormat=dateFormat, timestampFormat=timestampFormat, maxColumns=maxColumns,
maxCharsPerColumn=maxCharsPerColumn,
maxMalformedLogPerPartition=maxMalformedLogPerPartition, mode=mode,
columnNameOfCorruptRecord=columnNameOfCorruptRecord, wholeFile=wholeFile)
columnNameOfCorruptRecord=columnNameOfCorruptRecord, multiLine=multiLine)
if isinstance(path, basestring):
return self._df(self._jreader.csv(path))
else:
Expand Down
8 changes: 4 additions & 4 deletions python/pyspark/sql/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -457,15 +457,15 @@ def test_udf_registration_returns_udf(self):
df.select(add_three("id").alias("plus_three")).collect()
)

def test_wholefile_json(self):
def test_multiLine_json(self):
people1 = self.spark.read.json("python/test_support/sql/people.json")
people_array = self.spark.read.json("python/test_support/sql/people_array.json",
wholeFile=True)
multiLine=True)
self.assertEqual(people1.collect(), people_array.collect())

def test_wholefile_csv(self):
def test_multiline_csv(self):
ages_newlines = self.spark.read.csv(
"python/test_support/sql/ages_newlines.csv", wholeFile=True)
"python/test_support/sql/ages_newlines.csv", multiLine=True)
expected = [Row(_c0=u'Joe', _c1=u'20', _c2=u'Hi,\nI am Jeo'),
Row(_c0=u'Tom', _c1=u'30', _c2=u'My name is Tom'),
Row(_c0=u'Hyukjin', _c1=u'25', _c2=u'I am Hyukjin\n\nI love Spark!')]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ private[sql] class JSONOptions(
FastDateFormat.getInstance(
parameters.getOrElse("timestampFormat", "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"), timeZone, Locale.US)

val wholeFile = parameters.get("wholeFile").map(_.toBoolean).getOrElse(false)
val multiLine = parameters.get("multiLine").map(_.toBoolean).getOrElse(false)

/** Sets config options on a Jackson [[JsonFactory]]. */
def setJacksonOptions(factory: JsonFactory): Unit = {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
* Loads JSON files and returns the results as a `DataFrame`.
*
* <a href="http://jsonlines.org/">JSON Lines</a> (newline-delimited JSON) is supported by
* default. For JSON (one record per file), set the `wholeFile` option to true.
* default. For JSON (one record per file), set the `multiLine` option to true.
*
* This function goes through the input once to determine the input schema. If you know the
* schema in advance, use the version that specifies the schema to avoid the extra scan.
Expand Down Expand Up @@ -335,7 +335,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
* <li>`timestampFormat` (default `yyyy-MM-dd'T'HH:mm:ss.SSSXXX`): sets the string that
* indicates a timestamp format. Custom date formats follow the formats at
* `java.text.SimpleDateFormat`. This applies to timestamp type.</li>
* <li>`wholeFile` (default `false`): parse one record, which may span multiple lines,
* <li>`multiLine` (default `false`): parse one record, which may span multiple lines,
* per file</li>
* </ul>
*
Expand Down Expand Up @@ -537,7 +537,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
* <li>`columnNameOfCorruptRecord` (default is the value specified in
* `spark.sql.columnNameOfCorruptRecord`): allows renaming the new field having malformed string
* created by `PERMISSIVE` mode. This overrides `spark.sql.columnNameOfCorruptRecord`.</li>
* <li>`wholeFile` (default `false`): parse one record, which may span multiple lines.</li>
* <li>`multiLine` (default `false`): parse one record, which may span multiple lines.</li>
* </ul>
* @since 2.0.0
*/
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -111,8 +111,8 @@ abstract class CSVDataSource extends Serializable {

object CSVDataSource {
def apply(options: CSVOptions): CSVDataSource = {
if (options.wholeFile) {
WholeFileCSVDataSource
if (options.multiLine) {
MultiLineCSVDataSource
} else {
TextInputCSVDataSource
}
Expand Down Expand Up @@ -197,7 +197,7 @@ object TextInputCSVDataSource extends CSVDataSource {
}
}

object WholeFileCSVDataSource extends CSVDataSource {
object MultiLineCSVDataSource extends CSVDataSource {
override val isSplitable: Boolean = false

override def readFile(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ class CSVOptions(
FastDateFormat.getInstance(
parameters.getOrElse("timestampFormat", "yyyy-MM-dd'T'HH:mm:ss.SSSXXX"), timeZone, Locale.US)

val wholeFile = parameters.get("wholeFile").map(_.toBoolean).getOrElse(false)
val multiLine = parameters.get("multiLine").map(_.toBoolean).getOrElse(false)
Copy link
Member

@dongjoon-hyun dongjoon-hyun Jun 5, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That is different. Each JSON file only can parse at most one record when wholeFile is on.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh, I see. Thank you!

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

After rethinking the issue, we need to rename both CSV and JSON to multiLine and fix the JSON parsing to make them consistent.


val maxColumns = getInt("maxColumns", 20480)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -86,8 +86,8 @@ abstract class JsonDataSource extends Serializable {

object JsonDataSource {
def apply(options: JSONOptions): JsonDataSource = {
if (options.wholeFile) {
WholeFileJsonDataSource
if (options.multiLine) {
MultiLineJsonDataSource
} else {
TextInputJsonDataSource
}
Expand Down Expand Up @@ -147,7 +147,7 @@ object TextInputJsonDataSource extends JsonDataSource {
}
}

object WholeFileJsonDataSource extends JsonDataSource {
object MultiLineJsonDataSource extends JsonDataSource {
override val isSplitable: Boolean = {
false
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo
* Loads a JSON file stream and returns the results as a `DataFrame`.
*
* <a href="http://jsonlines.org/">JSON Lines</a> (newline-delimited JSON) is supported by
* default. For JSON (one record per file), set the `wholeFile` option to true.
* default. For JSON (one record per file), set the `multiLine` option to true.
*
* This function goes through the input once to determine the input schema. If you know the
* schema in advance, use the version that specifies the schema to avoid the extra scan.
Expand Down Expand Up @@ -205,7 +205,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo
* <li>`timestampFormat` (default `yyyy-MM-dd'T'HH:mm:ss.SSSXXX`): sets the string that
* indicates a timestamp format. Custom date formats follow the formats at
* `java.text.SimpleDateFormat`. This applies to timestamp type.</li>
* <li>`wholeFile` (default `false`): parse one record, which may span multiple lines,
* <li>`multiLine` (default `false`): parse one record, which may span multiple lines,
* per file</li>
* </ul>
*
Expand Down Expand Up @@ -276,7 +276,7 @@ final class DataStreamReader private[sql](sparkSession: SparkSession) extends Lo
* <li>`columnNameOfCorruptRecord` (default is the value specified in
* `spark.sql.columnNameOfCorruptRecord`): allows renaming the new field having malformed string
* created by `PERMISSIVE` mode. This overrides `spark.sql.columnNameOfCorruptRecord`.</li>
* <li>`wholeFile` (default `false`): parse one record, which may span multiple lines.</li>
* <li>`multiLine` (default `false`): parse one record, which may span multiple lines.</li>
* </ul>
*
* @since 2.0.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -261,10 +261,10 @@ class CSVSuite extends QueryTest with SharedSQLContext with SQLTestUtils {
}

test("test for DROPMALFORMED parsing mode") {
Seq(false, true).foreach { wholeFile =>
Seq(false, true).foreach { multiLine =>
val cars = spark.read
.format("csv")
.option("wholeFile", wholeFile)
.option("multiLine", multiLine)
.options(Map("header" -> "true", "mode" -> "dropmalformed"))
.load(testFile(carsFile))

Expand All @@ -284,11 +284,11 @@ class CSVSuite extends QueryTest with SharedSQLContext with SQLTestUtils {
}

test("test for FAILFAST parsing mode") {
Seq(false, true).foreach { wholeFile =>
Seq(false, true).foreach { multiLine =>
val exception = intercept[SparkException] {
spark.read
.format("csv")
.option("wholeFile", wholeFile)
.option("multiLine", multiLine)
.options(Map("header" -> "true", "mode" -> "failfast"))
.load(testFile(carsFile)).collect()
}
Expand Down Expand Up @@ -990,13 +990,13 @@ class CSVSuite extends QueryTest with SharedSQLContext with SQLTestUtils {
}

test("SPARK-18699 put malformed records in a `columnNameOfCorruptRecord` field") {
Seq(false, true).foreach { wholeFile =>
Seq(false, true).foreach { multiLine =>
val schema = new StructType().add("a", IntegerType).add("b", TimestampType)
// We use `PERMISSIVE` mode by default if invalid string is given.
val df1 = spark
.read
.option("mode", "abcd")
.option("wholeFile", wholeFile)
.option("multiLine", multiLine)
.schema(schema)
.csv(testFile(valueMalformedFile))
checkAnswer(df1,
Expand All @@ -1011,7 +1011,7 @@ class CSVSuite extends QueryTest with SharedSQLContext with SQLTestUtils {
.read
.option("mode", "Permissive")
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.option("wholeFile", wholeFile)
.option("multiLine", multiLine)
.schema(schemaWithCorrField1)
.csv(testFile(valueMalformedFile))
checkAnswer(df2,
Expand All @@ -1028,7 +1028,7 @@ class CSVSuite extends QueryTest with SharedSQLContext with SQLTestUtils {
.read
.option("mode", "permissive")
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.option("wholeFile", wholeFile)
.option("multiLine", multiLine)
.schema(schemaWithCorrField2)
.csv(testFile(valueMalformedFile))
checkAnswer(df3,
Expand All @@ -1041,7 +1041,7 @@ class CSVSuite extends QueryTest with SharedSQLContext with SQLTestUtils {
.read
.option("mode", "PERMISSIVE")
.option("columnNameOfCorruptRecord", columnNameOfCorruptRecord)
.option("wholeFile", wholeFile)
.option("multiLine", multiLine)
.schema(schema.add(columnNameOfCorruptRecord, IntegerType))
.csv(testFile(valueMalformedFile))
.collect
Expand Down Expand Up @@ -1073,7 +1073,7 @@ class CSVSuite extends QueryTest with SharedSQLContext with SQLTestUtils {

val df = spark.read
.option("header", true)
.option("wholeFile", true)
.option("multiLine", true)
.csv(path.getAbsolutePath)

// Check if headers have new lines in the names.
Expand All @@ -1096,10 +1096,10 @@ class CSVSuite extends QueryTest with SharedSQLContext with SQLTestUtils {
}

test("Empty file produces empty dataframe with empty schema") {
Seq(false, true).foreach { wholeFile =>
Seq(false, true).foreach { multiLine =>
val df = spark.read.format("csv")
.option("header", true)
.option("wholeFile", wholeFile)
.option("multiLine", multiLine)
.load(testFile(emptyFile))

assert(df.schema === spark.emptyDataFrame.schema)
Expand Down
Loading