Skip to content

Commit

Permalink
[SPARK-11629][ML][PYSPARK][DOC] Python example code for Multilayer Pe…
Browse files Browse the repository at this point in the history
…rceptron Classification

Add Python example code for Multilayer Perceptron Classification, and make example code in user guide document testable. mengxr

Author: Yanbo Liang <ybliang8@gmail.com>

Closes #9594 from yanboliang/spark-11629.
  • Loading branch information
yanboliang authored and mengxr committed Nov 13, 2015
1 parent 2035ed3 commit ea5ae27
Show file tree
Hide file tree
Showing 4 changed files with 206 additions and 66 deletions.
71 changes: 5 additions & 66 deletions docs/ml-ann.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,76 +48,15 @@ MLPC employes backpropagation for learning the model. We use logistic loss funct
<div class="codetabs">

<div data-lang="scala" markdown="1">

{% highlight scala %}
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.Row

// Load training data
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt").toDF()
// Split the data into train and test
val splits = data.randomSplit(Array(0.6, 0.4), seed = 1234L)
val train = splits(0)
val test = splits(1)
// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes)
val layers = Array[Int](4, 5, 4, 3)
// create the trainer and set its parameters
val trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(128)
.setSeed(1234L)
.setMaxIter(100)
// train the model
val model = trainer.fit(train)
// compute precision on the test set
val result = model.transform(test)
val predictionAndLabels = result.select("prediction", "label")
val evaluator = new MulticlassClassificationEvaluator()
.setMetricName("precision")
println("Precision:" + evaluator.evaluate(predictionAndLabels))
{% endhighlight %}

{% include_example scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala %}
</div>

<div data-lang="java" markdown="1">
{% include_example java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java %}
</div>

{% highlight java %}
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel;
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;

// Load training data
String path = "data/mllib/sample_multiclass_classification_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();
DataFrame dataFrame = sqlContext.createDataFrame(data, LabeledPoint.class);
// Split the data into train and test
DataFrame[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L);
DataFrame train = splits[0];
DataFrame test = splits[1];
// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes)
int[] layers = new int[] {4, 5, 4, 3};
// create the trainer and set its parameters
MultilayerPerceptronClassifier trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(128)
.setSeed(1234L)
.setMaxIter(100);
// train the model
MultilayerPerceptronClassificationModel model = trainer.fit(train);
// compute precision on the test set
DataFrame result = model.transform(test);
DataFrame predictionAndLabels = result.select("prediction", "label");
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setMetricName("precision");
System.out.println("Precision = " + evaluator.evaluate(predictionAndLabels));
{% endhighlight %}
<div data-lang="python" markdown="1">
{% include_example python/ml/multilayer_perceptron_classification.py %}
</div>

</div>
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel;
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
import org.apache.spark.sql.DataFrame;
// $example off$

/**
* An example for Multilayer Perceptron Classification.
*/
public class JavaMultilayerPerceptronClassifierExample {

public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaMultilayerPerceptronClassifierExample");
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext jsql = new SQLContext(jsc);

// $example on$
// Load training data
String path = "data/mllib/sample_multiclass_classification_data.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), path).toJavaRDD();
DataFrame dataFrame = jsql.createDataFrame(data, LabeledPoint.class);
// Split the data into train and test
DataFrame[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L);
DataFrame train = splits[0];
DataFrame test = splits[1];
// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4
// and output of size 3 (classes)
int[] layers = new int[] {4, 5, 4, 3};
// create the trainer and set its parameters
MultilayerPerceptronClassifier trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(128)
.setSeed(1234L)
.setMaxIter(100);
// train the model
MultilayerPerceptronClassificationModel model = trainer.fit(train);
// compute precision on the test set
DataFrame result = model.transform(test);
DataFrame predictionAndLabels = result.select("prediction", "label");
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setMetricName("precision");
System.out.println("Precision = " + evaluator.evaluate(predictionAndLabels));
// $example off$

jsc.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from __future__ import print_function

from pyspark import SparkContext
from pyspark.sql import SQLContext
# $example on$
from pyspark.ml.classification import MultilayerPerceptronClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.mllib.util import MLUtils
# $example off$

if __name__ == "__main__":

sc = SparkContext(appName="multilayer_perceptron_classification_example")
sqlContext = SQLContext(sc)

# $example on$
# Load training data
data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt")\
.toDF()
# Split the data into train and test
splits = data.randomSplit([0.6, 0.4], 1234)
train = splits[0]
test = splits[1]
# specify layers for the neural network:
# input layer of size 4 (features), two intermediate of size 5 and 4
# and output of size 3 (classes)
layers = [4, 5, 4, 3]
# create the trainer and set its parameters
trainer = MultilayerPerceptronClassifier(maxIter=100, layers=layers, blockSize=128, seed=1234)
# train the model
model = trainer.fit(train)
# compute precision on the test set
result = model.transform(test)
predictionAndLabels = result.select("prediction", "label")
evaluator = MulticlassClassificationEvaluator(metricName="precision")
print("Precision:" + str(evaluator.evaluate(predictionAndLabels)))
# $example off$

sc.stop()
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// scalastyle:off println
package org.apache.spark.examples.ml

import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.sql.SQLContext
// $example on$
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.mllib.util.MLUtils
// $example off$

/**
* An example for Multilayer Perceptron Classification.
*/
object MultilayerPerceptronClassifierExample {

def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("MultilayerPerceptronClassifierExample")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._

// $example on$
// Load training data
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt")
.toDF()
// Split the data into train and test
val splits = data.randomSplit(Array(0.6, 0.4), seed = 1234L)
val train = splits(0)
val test = splits(1)
// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4
// and output of size 3 (classes)
val layers = Array[Int](4, 5, 4, 3)
// create the trainer and set its parameters
val trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(128)
.setSeed(1234L)
.setMaxIter(100)
// train the model
val model = trainer.fit(train)
// compute precision on the test set
val result = model.transform(test)
val predictionAndLabels = result.select("prediction", "label")
val evaluator = new MulticlassClassificationEvaluator()
.setMetricName("precision")
println("Precision:" + evaluator.evaluate(predictionAndLabels))
// $example off$

sc.stop()
}
}
// scalastyle:off println

0 comments on commit ea5ae27

Please sign in to comment.