-
Notifications
You must be signed in to change notification settings - Fork 28.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-26412][PYSPARK][SQL] Allow Pandas UDF to take an iterator of p…
…d.Series or an iterator of tuple of pd.Series ## What changes were proposed in this pull request? Allow Pandas UDF to take an iterator of pd.Series or an iterator of tuple of pd.Series. Note the UDF input args will be always one iterator: * if the udf take only column as input, the iterator's element will be pd.Series (corresponding to the column values batch) * if the udf take multiple columns as inputs, the iterator's element will be a tuple composed of multiple `pd.Series`s, each one corresponding to the multiple columns as inputs (keep the same order). For example: ``` pandas_udf("int", PandasUDFType.SCALAR_ITER) def the_udf(iterator): for col1_batch, col2_batch in iterator: yield col1_batch + col2_batch df.select(the_udf("col1", "col2")) ``` The udf above will add col1 and col2. I haven't add unit tests, but manually tests show it works fine. So it is ready for first pass review. We can test several typical cases: ``` from pyspark.sql import SparkSession from pyspark.sql.functions import pandas_udf, PandasUDFType from pyspark.sql.functions import udf from pyspark.taskcontext import TaskContext df = spark.createDataFrame([(1, 20), (3, 40)], ["a", "b"]) pandas_udf("int", PandasUDFType.SCALAR_ITER) def fi1(it): pid = TaskContext.get().partitionId() print("DBG: fi1: do init stuff, partitionId=" + str(pid)) for batch in it: yield batch + 100 print("DBG: fi1: do close stuff, partitionId=" + str(pid)) pandas_udf("int", PandasUDFType.SCALAR_ITER) def fi2(it): pid = TaskContext.get().partitionId() print("DBG: fi2: do init stuff, partitionId=" + str(pid)) for batch in it: yield batch + 10000 print("DBG: fi2: do close stuff, partitionId=" + str(pid)) pandas_udf("int", PandasUDFType.SCALAR_ITER) def fi3(it): pid = TaskContext.get().partitionId() print("DBG: fi3: do init stuff, partitionId=" + str(pid)) for x, y in it: yield x + y * 10 + 100000 print("DBG: fi3: do close stuff, partitionId=" + str(pid)) pandas_udf("int", PandasUDFType.SCALAR) def fp1(x): return x + 1000 udf("int") def fu1(x): return x + 10 # test select "pandas iter udf/pandas udf/sql udf" expressions at the same time. # Note this case the `fi1("a"), fi2("b"), fi3("a", "b")` will generate only one plan, # and `fu1("a")`, `fp1("a")` will generate another two separate plans. df.select(fi1("a"), fi2("b"), fi3("a", "b"), fu1("a"), fp1("a")).show() # test chain two pandas iter udf together # Note this case `fi2(fi1("a"))` will generate only one plan # Also note the init stuff/close stuff call order will be like: # (debug output following) # DBG: fi2: do init stuff, partitionId=0 # DBG: fi1: do init stuff, partitionId=0 # DBG: fi1: do close stuff, partitionId=0 # DBG: fi2: do close stuff, partitionId=0 df.select(fi2(fi1("a"))).show() # test more complex chain # Note this case `fi1("a"), fi2("a")` will generate one plan, # and `fi3(fi1_output, fi2_output)` will generate another plan df.select(fi3(fi1("a"), fi2("a"))).show() ``` ## How was this patch tested? To be added. Please review http://spark.apache.org/contributing.html before opening a pull request. Closes #24643 from WeichenXu123/pandas_udf_iter. Lead-authored-by: WeichenXu <weichen.xu@databricks.com> Co-authored-by: Xiangrui Meng <meng@databricks.com> Signed-off-by: Xiangrui Meng <meng@databricks.com>
- Loading branch information
1 parent
a950570
commit 6d441dc
Showing
11 changed files
with
703 additions
and
350 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters