-
Notifications
You must be signed in to change notification settings - Fork 28.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-11383][DOCS] Replaced example code in mllib-naive-bayes.md/mll…
…ib-isotonic-regression.md using include_example I have made the required changes in mllib-naive-bayes.md/mllib-isotonic-regression.md and also verified them. Kindle Review it. Author: Rishabh Bhardwaj <rbnext29@gmail.com> Closes #9353 from rishabhbhardwaj/SPARK-11383.
- Loading branch information
1 parent
db11ee5
commit 2804674
Showing
8 changed files
with
391 additions
and
207 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
86 changes: 86 additions & 0 deletions
86
examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.apache.spark.examples.mllib; | ||
|
||
// $example on$ | ||
import scala.Tuple2; | ||
import scala.Tuple3; | ||
import org.apache.spark.api.java.function.Function; | ||
import org.apache.spark.api.java.function.PairFunction; | ||
import org.apache.spark.api.java.JavaDoubleRDD; | ||
import org.apache.spark.api.java.JavaPairRDD; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.mllib.regression.IsotonicRegression; | ||
import org.apache.spark.mllib.regression.IsotonicRegressionModel; | ||
// $example off$ | ||
import org.apache.spark.SparkConf; | ||
|
||
public class JavaIsotonicRegressionExample { | ||
public static void main(String[] args) { | ||
SparkConf sparkConf = new SparkConf().setAppName("JavaIsotonicRegressionExample"); | ||
JavaSparkContext jsc = new JavaSparkContext(sparkConf); | ||
// $example on$ | ||
JavaRDD<String> data = jsc.textFile("data/mllib/sample_isotonic_regression_data.txt"); | ||
|
||
// Create label, feature, weight tuples from input data with weight set to default value 1.0. | ||
JavaRDD<Tuple3<Double, Double, Double>> parsedData = data.map( | ||
new Function<String, Tuple3<Double, Double, Double>>() { | ||
public Tuple3<Double, Double, Double> call(String line) { | ||
String[] parts = line.split(","); | ||
return new Tuple3<>(new Double(parts[0]), new Double(parts[1]), 1.0); | ||
} | ||
} | ||
); | ||
|
||
// Split data into training (60%) and test (40%) sets. | ||
JavaRDD<Tuple3<Double, Double, Double>>[] splits = parsedData.randomSplit(new double[]{0.6, 0.4}, 11L); | ||
JavaRDD<Tuple3<Double, Double, Double>> training = splits[0]; | ||
JavaRDD<Tuple3<Double, Double, Double>> test = splits[1]; | ||
|
||
// Create isotonic regression model from training data. | ||
// Isotonic parameter defaults to true so it is only shown for demonstration | ||
final IsotonicRegressionModel model = new IsotonicRegression().setIsotonic(true).run(training); | ||
|
||
// Create tuples of predicted and real labels. | ||
JavaPairRDD<Double, Double> predictionAndLabel = test.mapToPair( | ||
new PairFunction<Tuple3<Double, Double, Double>, Double, Double>() { | ||
@Override | ||
public Tuple2<Double, Double> call(Tuple3<Double, Double, Double> point) { | ||
Double predictedLabel = model.predict(point._2()); | ||
return new Tuple2<Double, Double>(predictedLabel, point._1()); | ||
} | ||
} | ||
); | ||
|
||
// Calculate mean squared error between predicted and real labels. | ||
Double meanSquaredError = new JavaDoubleRDD(predictionAndLabel.map( | ||
new Function<Tuple2<Double, Double>, Object>() { | ||
@Override | ||
public Object call(Tuple2<Double, Double> pl) { | ||
return Math.pow(pl._1() - pl._2(), 2); | ||
} | ||
} | ||
).rdd()).mean(); | ||
System.out.println("Mean Squared Error = " + meanSquaredError); | ||
|
||
// Save and load model | ||
model.save(jsc.sc(), "target/tmp/myIsotonicRegressionModel"); | ||
IsotonicRegressionModel sameModel = IsotonicRegressionModel.load(jsc.sc(), "target/tmp/myIsotonicRegressionModel"); | ||
// $example off$ | ||
} | ||
} |
Oops, something went wrong.