Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Fix reduce_kernel_M1 #12026

Merged
merged 2 commits into from
Aug 4, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions src/operator/tensor/broadcast_reduce-inl.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -268,7 +268,11 @@ __global__ void reduce_kernel_M1(const int N, const bool addto,
for (int idx = threadIdx.x + blockIdx.x*blockDim.x; idx < N; idx += blockDim.x*gridDim.x) {
Shape<ndim> coord = unravel(idx, sshape);
int j = ravel(coord, bshape);
assign(&small[idx], addto, OP::Map(big[j]));
DType val, residual;
Reducer::SetInitValue(val, residual);
Reducer::Reduce(val, OP::Map(big[j]), residual);
Reducer::Finalize(val, residual);
assign(&small[idx], addto, val);
}
}

Expand All @@ -287,7 +291,10 @@ __global__ void reduce_kernel_M1(const int N, const bool addto,
int idx_big = ravel(coord, big_shape);
int idx_lhs = ravel(coord, lhs_shape);
int idx_rhs = ravel(coord, rhs_shape);
DType val = OP1::Map(big[idx_big], OP2::Map(lhs[idx_lhs], rhs[idx_rhs]));
DType val, residual;
Reducer::SetInitValue(val, residual);
Reducer::Reduce(val, OP1::Map(big[idx_big], OP2::Map(lhs[idx_lhs], rhs[idx_rhs])), residual);
Reducer::Finalize(val, residual);
assign(&small[idx], addto, val);
}
}
Expand Down
34 changes: 20 additions & 14 deletions tests/python/unittest/test_ndarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -1308,25 +1308,31 @@ def test_norm(ctx=default_context()):

def l1norm(input_data, axis=0, keepdims=False):
return np.sum(abs(input_data), axis=axis, keepdims=keepdims)
def l2norm(input_data, axis=0, keepdims=False):
def l2norm(input_data, axis=0, keepdims=False):
return sp_norm(input_data, axis=axis, keepdims=keepdims)

in_data_dim = random_sample([4,5,6], 1)[0]
in_data_shape = rand_shape_nd(in_data_dim)
np_arr = np.random.uniform(-1, 1, in_data_shape).astype(np.float32)
mx_arr = mx.nd.array(np_arr, ctx=ctx)
for ord in [1,2]:
for keep_dims in [True, False]:
for i in range(4):
npy_out = l1norm(np_arr, i, keep_dims) if ord==1 else l2norm(np_arr, i, keep_dims)
mx_out = mx.nd.norm(mx_arr, ord=ord, axis=i, keepdims=keep_dims)
assert npy_out.shape == mx_out.shape
mx.test_utils.assert_almost_equal(npy_out, mx_out.asnumpy())
if (i < 3):
npy_out = l1norm(np_arr, (i, i+1), keep_dims) if ord==1 else l2norm(np_arr, (i, i+1), keep_dims)
mx_out = mx.nd.norm(mx_arr, ord=ord, axis=(i, i+1), keepdims=keep_dims)
for force_reduce_dim1 in [True, False]:
in_data_shape = rand_shape_nd(in_data_dim)
if force_reduce_dim1:
in_data_shape = in_data_shape[:3] + (1, ) + in_data_shape[4:]
np_arr = np.random.uniform(-1, 1, in_data_shape).astype(np.float32)
mx_arr = mx.nd.array(np_arr, ctx=ctx)
for ord in [1, 2]:
for keep_dims in [True, False]:
for i in range(4):
npy_out = l1norm(np_arr, i, keep_dims) if ord == 1 else l2norm(
np_arr, i, keep_dims)
mx_out = mx.nd.norm(mx_arr, ord=ord, axis=i, keepdims=keep_dims)
assert npy_out.shape == mx_out.shape
mx.test_utils.assert_almost_equal(npy_out, mx_out.asnumpy())
if (i < 3):
npy_out = l1norm(np_arr, (i, i + 1), keep_dims) if ord == 1 else l2norm(
np_arr, (i, i + 1), keep_dims)
mx_out = mx.nd.norm(mx_arr, ord=ord, axis=(i, i + 1), keepdims=keep_dims)
assert npy_out.shape == mx_out.shape
mx.test_utils.assert_almost_equal(npy_out, mx_out.asnumpy())


@with_seed()
def test_ndarray_cpu_shared_ctx():
Expand Down