Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduced the Word2VecSynonymFilter #12169

Merged
merged 6 commits into from
Apr 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions lucene/CHANGES.txt
Original file line number Diff line number Diff line change
Expand Up @@ -131,6 +131,8 @@ New Features
crash the JVM. To disable this feature, pass the following sysprop on Java command line:
"-Dorg.apache.lucene.store.MMapDirectory.enableMemorySegments=false" (Uwe Schindler)

* GITHUB#12169: Introduce a new token filter to expand synonyms based on Word2Vec DL4j models. (Daniele Antuzi, Ilaria Petreti, Alessandro Benedetti)

Improvements
---------------------

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,8 @@
import org.apache.lucene.analysis.standard.StandardTokenizer;
import org.apache.lucene.analysis.stempel.StempelStemmer;
import org.apache.lucene.analysis.synonym.SynonymMap;
import org.apache.lucene.analysis.synonym.word2vec.Word2VecModel;
import org.apache.lucene.analysis.synonym.word2vec.Word2VecSynonymProvider;
import org.apache.lucene.store.ByteBuffersDirectory;
import org.apache.lucene.tests.analysis.BaseTokenStreamTestCase;
import org.apache.lucene.tests.analysis.MockTokenFilter;
Expand All @@ -99,8 +101,10 @@
import org.apache.lucene.tests.util.automaton.AutomatonTestUtil;
import org.apache.lucene.util.AttributeFactory;
import org.apache.lucene.util.AttributeSource;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.CharsRef;
import org.apache.lucene.util.IgnoreRandomChains;
import org.apache.lucene.util.TermAndVector;
import org.apache.lucene.util.Version;
import org.apache.lucene.util.automaton.Automaton;
import org.apache.lucene.util.automaton.CharacterRunAutomaton;
Expand Down Expand Up @@ -415,6 +419,27 @@ private String randomNonEmptyString(Random random) {
}
}
});
put(
Word2VecSynonymProvider.class,
random -> {
final int numEntries = atLeast(10);
final int vectorDimension = random.nextInt(99) + 1;
Word2VecModel model = new Word2VecModel(numEntries, vectorDimension);
for (int j = 0; j < numEntries; j++) {
String s = TestUtil.randomSimpleString(random, 10, 20);
float[] vec = new float[vectorDimension];
for (int i = 0; i < vectorDimension; i++) {
vec[i] = random.nextFloat();
}
model.addTermAndVector(new TermAndVector(new BytesRef(s), vec));
}
try {
return new Word2VecSynonymProvider(model);
} catch (IOException e) {
Rethrow.rethrow(e);
return null; // unreachable code
}
});
put(
DateFormat.class,
random -> {
Expand Down
2 changes: 2 additions & 0 deletions lucene/analysis/common/src/java/module-info.java
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,7 @@
exports org.apache.lucene.analysis.sr;
exports org.apache.lucene.analysis.sv;
exports org.apache.lucene.analysis.synonym;
exports org.apache.lucene.analysis.synonym.word2vec;
exports org.apache.lucene.analysis.ta;
exports org.apache.lucene.analysis.te;
exports org.apache.lucene.analysis.th;
Expand Down Expand Up @@ -257,6 +258,7 @@
org.apache.lucene.analysis.sv.SwedishMinimalStemFilterFactory,
org.apache.lucene.analysis.synonym.SynonymFilterFactory,
org.apache.lucene.analysis.synonym.SynonymGraphFilterFactory,
org.apache.lucene.analysis.synonym.word2vec.Word2VecSynonymFilterFactory,
org.apache.lucene.analysis.core.FlattenGraphFilterFactory,
org.apache.lucene.analysis.te.TeluguNormalizationFilterFactory,
org.apache.lucene.analysis.te.TeluguStemFilterFactory,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.lucene.analysis.synonym.word2vec;

import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.Closeable;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.charset.StandardCharsets;
import java.util.Base64;
import java.util.Locale;
import java.util.zip.ZipEntry;
import java.util.zip.ZipInputStream;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.TermAndVector;

/**
* Dl4jModelReader reads the file generated by the library Deeplearning4j and provide a
* Word2VecModel with normalized vectors
*
* <p>Dl4j Word2Vec documentation:
* https://deeplearning4j.konduit.ai/v/en-1.0.0-beta7/language-processing/word2vec Example to
* generate a model using dl4j:
* https://github.com/eclipse/deeplearning4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/advanced/modelling/embeddingsfromcorpus/word2vec/Word2VecRawTextExample.java
*
* @lucene.experimental
*/
public class Dl4jModelReader implements Closeable {

private static final String MODEL_FILE_NAME_PREFIX = "syn0";

private final ZipInputStream word2VecModelZipFile;

public Dl4jModelReader(InputStream stream) {
this.word2VecModelZipFile = new ZipInputStream(new BufferedInputStream(stream));
}

public Word2VecModel read() throws IOException {

ZipEntry entry;
while ((entry = word2VecModelZipFile.getNextEntry()) != null) {
String fileName = entry.getName();
if (fileName.startsWith(MODEL_FILE_NAME_PREFIX)) {
BufferedReader reader =
new BufferedReader(new InputStreamReader(word2VecModelZipFile, StandardCharsets.UTF_8));

String header = reader.readLine();
String[] headerValues = header.split(" ");
int dictionarySize = Integer.parseInt(headerValues[0]);
int vectorDimension = Integer.parseInt(headerValues[1]);

Word2VecModel model = new Word2VecModel(dictionarySize, vectorDimension);
String line = reader.readLine();
boolean isTermB64Encoded = false;
if (line != null) {
String[] tokens = line.split(" ");
isTermB64Encoded =
tokens[0].substring(0, 3).toLowerCase(Locale.ROOT).compareTo("b64") == 0;
model.addTermAndVector(extractTermAndVector(tokens, vectorDimension, isTermB64Encoded));
}
while ((line = reader.readLine()) != null) {
String[] tokens = line.split(" ");
model.addTermAndVector(extractTermAndVector(tokens, vectorDimension, isTermB64Encoded));
}
return model;
}
}
throw new IllegalArgumentException(
"Cannot read Dl4j word2vec model - '"
+ MODEL_FILE_NAME_PREFIX
+ "' file is missing in the zip. '"
+ MODEL_FILE_NAME_PREFIX
+ "' is a mandatory file containing the mapping between terms and vectors generated by the DL4j library.");
}

private static TermAndVector extractTermAndVector(
String[] tokens, int vectorDimension, boolean isTermB64Encoded) {
BytesRef term = isTermB64Encoded ? decodeB64Term(tokens[0]) : new BytesRef((tokens[0]));

float[] vector = new float[tokens.length - 1];

if (vectorDimension != vector.length) {
throw new RuntimeException(
String.format(
Locale.ROOT,
"Word2Vec model file corrupted. "
+ "Declared vectors of size %d but found vector of size %d for word %s (%s)",
vectorDimension,
vector.length,
tokens[0],
term.utf8ToString()));
}

for (int i = 1; i < tokens.length; i++) {
vector[i - 1] = Float.parseFloat(tokens[i]);
}
return new TermAndVector(term, vector);
}

static BytesRef decodeB64Term(String term) {
byte[] buffer = Base64.getDecoder().decode(term.substring(4));
return new BytesRef(buffer, 0, buffer.length);
}

@Override
public void close() throws IOException {
word2VecModelZipFile.close();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.lucene.analysis.synonym.word2vec;

import java.io.IOException;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.BytesRefHash;
import org.apache.lucene.util.TermAndVector;
import org.apache.lucene.util.hnsw.RandomAccessVectorValues;

/**
* Word2VecModel is a class representing the parsed Word2Vec model containing the vectors for each
* word in dictionary
*
* @lucene.experimental
*/
public class Word2VecModel implements RandomAccessVectorValues<float[]> {

private final int dictionarySize;
private final int vectorDimension;
private final TermAndVector[] termsAndVectors;
private final BytesRefHash word2Vec;
private int loadedCount = 0;

public Word2VecModel(int dictionarySize, int vectorDimension) {
this.dictionarySize = dictionarySize;
this.vectorDimension = vectorDimension;
this.termsAndVectors = new TermAndVector[dictionarySize];
this.word2Vec = new BytesRefHash();
}

private Word2VecModel(
int dictionarySize,
int vectorDimension,
TermAndVector[] termsAndVectors,
BytesRefHash word2Vec) {
this.dictionarySize = dictionarySize;
this.vectorDimension = vectorDimension;
this.termsAndVectors = termsAndVectors;
this.word2Vec = word2Vec;
}

public void addTermAndVector(TermAndVector modelEntry) {
modelEntry.normalizeVector();
this.termsAndVectors[loadedCount++] = modelEntry;
this.word2Vec.add(modelEntry.getTerm());
}

@Override
public float[] vectorValue(int targetOrd) {
return termsAndVectors[targetOrd].getVector();
}

public float[] vectorValue(BytesRef term) {
int termOrd = this.word2Vec.find(term);
if (termOrd < 0) return null;
TermAndVector entry = this.termsAndVectors[termOrd];
return (entry == null) ? null : entry.getVector();
}

public BytesRef termValue(int targetOrd) {
return termsAndVectors[targetOrd].getTerm();
}

@Override
public int dimension() {
return vectorDimension;
}

@Override
public int size() {
return dictionarySize;
}

@Override
public RandomAccessVectorValues<float[]> copy() throws IOException {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if this copy is meant to do a deep copy, I suspect we'll need to handle it differently, I am not sure it's copying the internal elements, but reusing them?
So a copy could end up adding elements to data structures used by the original Object?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It does not need to do a deep copy; the purpose of this method is to enable multiple concurrent accesses to the underlying data. Since this implementation doesn't have any temporary variable into which vectors are decoded (which could be overwritten), I think it's safe to simply return this.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@msokolov I tried to implement your suggestion but it looks like the method HnswGraphBuilder::build doesn't want the same reference passed to the HnswGraphBuilder.create. [1]
To be honest I still don't understand why this check [2] is required

[1]

Vectors to build must be independent of the source of vectors provided to HnswGraphBuilder()
java.lang.IllegalArgumentException: Vectors to build must be independent of the source of vectors provided to HnswGraphBuilder()
	at __randomizedtesting.SeedInfo.seed([994075DD4398F0A4:E100BB05917EA0E6]:0)
	at org.apache.lucene.core@10.0.0-SNAPSHOT/org.apache.lucene.util.hnsw.HnswGraphBuilder.build(HnswGraphBuilder.java:165)
	at org.apache.lucene.analysis.synonym.word2vec.Word2VecSynonymProvider.<init>(Word2VecSynonymProvider.java:64)
	at org.apache.lucene.analysis.synonym.word2vec.TestWord2VecSynonymProvider.<init>(TestWord2VecSynonymProvider.java:39)

[2]

if (vectorsToAdd == this.vectors) {
throw new IllegalArgumentException(
"Vectors to build must be independent of the source of vectors provided to HnswGraphBuilder()");
}

return new Word2VecModel(
this.dictionarySize, this.vectorDimension, this.termsAndVectors, this.word2Vec);
}
}
Loading