Skip to content

Convert Python class to Numba aware class, using StructRef.

License

Notifications You must be signed in to change notification settings

anvlobachev/numbaclass

Repository files navigation

Numbaclass

Add @numbaclass decorator to Python class, to compile it with Numba experimental StructRef.

  • Converted class will work inside other jitted or non-jitted functions in pure Python.
  • Classed can be nested.
  • Supports Numba cache
import numpy as np
from numbaclass import numbaclass

@numbaclass(cache=True)
class ExampleIncr:
    def __init__(self, arr_, incr_val):
        self.arr_ = arr_
        self.incr_val = incr_val

    def incr(self, i):
        self.arr_[i] += self.incr_val

    def get_count(self, i):
        return self.arr_[i]

Because @numbaclass relies on Numba StructRef, the above example, under the hood, converts to this:

Click to expand
 
import numpy as np

from numba import njit
from numba.core import types
from numba.experimental import structref
from numba.core.extending import overload_method, register_jitable


class ExampleIncr(structref.StructRefProxy):
    def __new__(
        cls,
        arr_,
        incr_val
    ):
        return structref.StructRefProxy.__new__(
            cls,
            arr_,
            incr_val
        )

    @property
    def arr_(self):
        return get__arr_(self)

    @property
    def incr_val(self):
        return get__incr_val(self)

    def get_count(self, i):
        return invoke__get_count(self, i)

    def incr(self, i):
        return invoke__incr(self, i)

@njit(cache=True)
def get__arr_(self):
    return self.arr_

@njit(cache=True)
def get__incr_val(self):
    return self.incr_val

@register_jitable
def the__get_count(self, i):
    return self.arr_[i]


@njit(cache=True)
def invoke__get_count(self, i):
    return the__get_count(self, i)

@register_jitable
def the__incr(self, i):
    self.arr_[i] += self.incr_val


@njit(cache=True)
def invoke__incr(self, i):
    return the__incr(self, i)


@structref.register
class ExampleIncrType(types.StructRef):
    def preprocess_fields(self, fields):
        return tuple((name, types.unliteral(typ)) for name, typ in fields)

structref.define_proxy(
    ExampleIncr,
    ExampleIncrType,
    [
 "arr_",
 "incr_val"
    ],
)

@overload_method(ExampleIncrType, "get_count", fastmath=False)
def ol__get_count(self, i):
    return the__get_count

@overload_method(ExampleIncrType, "incr", fastmath=False)
def ol__incr(self, i):
    return the__incr

Every method gets wrapped with @njit (same as @jit(nopython=True))

By default, cache flag is False. @numbaclass(cache=False) will not store files and caches.
Set @numbaclass(cache=True) to save generated code and numba compiled cache to __nbcache__ folder, neighbouring __pycache__.

Installation

git clone git@github.com:anvlobachev/numbaclass.git
cd numbaclass
python -m pip install .

Configure

Disable conversion globally via environment variable:
"NUMBACLS_BYPASS" = "1"

Use Guides and Tips

  • Decorator expects one Python class within module.

  • "self." attributes within __init__ must be assigned with Numba compatible data types or objects.

  • Scalar variable will be treated as constant by StructRef. To be able to update the value, it's advisable to use array of one item size. Probably overcome this.

@numbaclass is usefull for arranging code for compute intensive, repetative operations with a state.

Decorated class stays clean from additional code, which is needed using StructRef directily. In case of Numba's own @jitclass decorator, caching and nesting is not supported. While @numbaclass utilizes StructRef to cache compiled code and allows to constuct nested classes.

Todos

  • Add setters
  • Move from Alfa to Beta release
  • Check changes of source vs cached before generate.
  • Implement literal_unroll mock.
  • Implement with object() mock to call pure Python from jitted code.

About

Convert Python class to Numba aware class, using StructRef.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages