Techniques : Predictive Modeling, Prediction, Regression Modeling, Regression, Feature Expraction, Preprocessing, Visualizeation, Feature Engineering
- Developed regression model for predicting movie revenue and ratings from 5000 movie data.
- Performed data analysis, visualization, feature extraction, cleaning (missing value, anomaly), preprocessing (rescaling, normalization, feature transformation (one hot encoding)) and trained with cross-validation.
- With 28 numerical, textual and categorical features attained regression error (Mean Squared Error) 0.005 on scale of 1 for revenue.
![](https://github.com/anjanatiha/Movie-Revenue-Rating-Prediction-System/raw/master/Original/Plot/DTR%20Bar.png)
![](https://github.com/anjanatiha/Movie-Revenue-Rating-Prediction-System/raw/master/Original/Plot/DTR%20Line.png)
![](https://github.com/anjanatiha/Movie-Revenue-Rating-Prediction-System/raw/master/Original/Plot/download%20(1).png)
![](https://github.com/anjanatiha/Movie-Revenue-Rating-Prediction-System/raw/master/Original/Plot/Director.png)
![](https://github.com/anjanatiha/Movie-Revenue-Rating-Prediction-System/raw/master/Original/Plot/actor%201.png)
![](https://github.com/anjanatiha/Movie-Revenue-Rating-Prediction-System/raw/master/Original/Plot/actor%202.png)
![](https://github.com/anjanatiha/Movie-Revenue-Rating-Prediction-System/raw/master/Original/Plot/actor%203.png)
Current Version : v1.0.0.0
Last Update : 10.11.2016