Skip to content

alibaba-yiwuyao/dawnbench_infer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dawnbench Inference on Imagenet

Summary

The inference speed of ResNet26-based model is improved through PAI-Blade. PAI-Blade is the framework for high-efficiency model deployment developed by AliCloud PAI: PAI-Blade. The BBS (Blade Benchmark Suite) can be accessed: BBS. In addition, optimized INT8 conv2d operators are generated through TVM TensorCore AutoCodeGen.

Run inference

  1. Clone this repo.
  2. Put Imagenet validation set (50000 images) in imagenet/val_data/.
./imagenet/val_data/
├── ILSVRC2012_val_00000001.JPEG
├── ILSVRC2012_val_00000002.JPEG
├── ILSVRC2012_val_00000003.JPEG
├── ILSVRC2012_val_00000004.JPEG
├── ILSVRC2012_val_00000005.JPEG
├── ILSVRC2012_val_00000006.JPEG
...
  1. Pull nvcr.io/nvidia/tensorrt:19.09-py3 from NGC.
  2. Start nvcr.io/nvidia/tensorrt:19.09-py3 container, and install dependencies:
# start docker container
sh run.sh

# Install TensorFlow
pip install tensorflow==1.13.1
  1. Set environment in host:
sh set_env.sh
  1. In the container workspace, run cmd as below:
# Assuming the workspace is mounted as /app
cd /app

# Run for inference
sh eval.sh

About

Dawnbench Inference on Imagenet

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published