Python based post-processing PIV data analysis
Merging the three packages:
- https://github.com/tomerast/Vecpy
- https://github.com/alexlib/pivpy/tree/xarray
- https://github.com/ronshnapp/vecpy
Use pip
:
pip install pivpy[all]
to include also lvpyio
if you work with Lavision files
pip install pivpy
if you use OpenPIV, PIVlab, etc.
git clone https://github.com/alexlib/pivpy .
cd pivpy
conda create -n pivpy python=3.11
conda activate pivpy
conda install pip
pip install -e .
-
lvpyio
by Lavision Inc. if you use vc7 files -
netcdf4
if you want to store NetCDF4 files by xarray -
pyarrow
if you want to store parquet files -
vortexfitting
if you want to do vortex analysis ($\lambda_2$ and$Q$ criterions, vortex fitting) -
numpy
,scipy
,matplotlib
,xarray
are must and installed with thepivpy
- @alexlib
- @ronshnapp - original steps
- @liorshig - LVreader and great visualizaiton for Lavision
- @nepomnyi - connection to VortexFitting and new algorithms
Look into the getting started Jupyter notebook
and additional notebooks: Notebooks
From a command line just use:
pip install pytest
pytest
Read the ToDo file and pick one item to program. Use Fork-Develop-Pull Request model to contribute
Using great tutorial http://sphinx-ipynb.readthedocs.org/en/latest/howto.html we now can prepare IPython notebooks (see in /docs/source) and convert those to .rst files, then
python setup.py sphinx-build
sphinx-build -b html docs/source/ docs/build/html
generates docs/build/html
directory with the documentation