Skip to content

Commit

Permalink
Auto merge of rust-lang#40601 - stjepang:sort-unstable, r=alexcrichton
Browse files Browse the repository at this point in the history
Implement feature sort_unstable

Tracking issue for the feature: rust-lang#40585

This is essentially integration of [pdqsort](https://github.com/stjepang/pdqsort) into libcore.

There's plenty of unsafe blocks to review. The heart of pdqsort is `fn partition_in_blocks` and is probably the most challenging function to understand. It requires some patience, but let me know if you find it too difficult - comments could always be improved.

#### Changes

* Added `sort_unstable` feature.
* Tweaked insertion sort constants for stable sort. Sorting integers is now up to 5% slower, but sorting big elements is much faster (in particular, `sort_large_big_random` is 35% faster). The old constants were highly optimized for sorting integers, so overall the configuration is more balanced now. A minor regression in case of integers is forgivable as we recently had performance improvements (rust-lang#39538) that completely make up for it.
* Removed some uninteresting sort benchmarks.
* Added a new sort benchmark for string sorting.

#### Benchmarks

The following table compares stable and unstable sorting:
```
name                                 stable ns/iter        unstable ns/iter     diff ns/iter   diff %
slice::sort_large_ascending          7,240 (11049 MB/s)    7,380 (10840 MB/s)            140    1.93%
slice::sort_large_big_random         1,454,138 (880 MB/s)  910,269 (1406 MB/s)      -543,869  -37.40%
slice::sort_large_descending         13,450 (5947 MB/s)    10,895 (7342 MB/s)         -2,555  -19.00%
slice::sort_large_mostly_ascending   204,041 (392 MB/s)    88,639 (902 MB/s)        -115,402  -56.56%
slice::sort_large_mostly_descending  217,109 (368 MB/s)    99,009 (808 MB/s)        -118,100  -54.40%
slice::sort_large_random             477,257 (167 MB/s)    346,028 (231 MB/s)       -131,229  -27.50%
slice::sort_large_random_expensive   21,670,537 (3 MB/s)   22,710,238 (3 MB/s)     1,039,701    4.80%
slice::sort_large_strings            6,284,499 (38 MB/s)   6,410,896 (37 MB/s)       126,397    2.01%
slice::sort_medium_random            3,515 (227 MB/s)      3,327 (240 MB/s)             -188   -5.35%
slice::sort_small_ascending          42 (1904 MB/s)        41 (1951 MB/s)                 -1   -2.38%
slice::sort_small_big_random         503 (2544 MB/s)       514 (2490 MB/s)                11    2.19%
slice::sort_small_descending         72 (1111 MB/s)        69 (1159 MB/s)                 -3   -4.17%
slice::sort_small_random             369 (216 MB/s)        367 (217 MB/s)                 -2   -0.54%
```

Interesting cases:
* Expensive comparison function and string sorting - it's a really close race, but timsort performs a slightly smaller number of comparisons. This is a natural difference of bottom-up merging versus top-down partitioning.
* `large_descending` - unstable sort is faster, but both sorts should have equivalent performance. Both just check whether the slice is descending and if so, they reverse it. I blame LLVM for the discrepancy.

r? @alexcrichton
  • Loading branch information
bors committed Mar 21, 2017
2 parents 58c701f + a718051 commit cab4bff
Show file tree
Hide file tree
Showing 10 changed files with 1,069 additions and 113 deletions.
1 change: 1 addition & 0 deletions src/libcollections/benches/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
#![deny(warnings)]

#![feature(rand)]
#![feature(sort_unstable)]
#![feature(test)]

extern crate test;
Expand Down
110 changes: 61 additions & 49 deletions src/libcollections/benches/slice.rs
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,7 @@ fn random_inserts(b: &mut Bencher) {
}
})
}

#[bench]
fn random_removes(b: &mut Bencher) {
let mut rng = thread_rng();
Expand Down Expand Up @@ -216,65 +217,76 @@ fn gen_mostly_descending(len: usize) -> Vec<u64> {
v
}

fn gen_big_random(len: usize) -> Vec<[u64; 16]> {
fn gen_strings(len: usize) -> Vec<String> {
let mut rng = thread_rng();
rng.gen_iter().map(|x| [x; 16]).take(len).collect()
}

fn gen_big_ascending(len: usize) -> Vec<[u64; 16]> {
(0..len as u64).map(|x| [x; 16]).take(len).collect()
let mut v = vec![];
for _ in 0..len {
let n = rng.gen::<usize>() % 20 + 1;
v.push(rng.gen_ascii_chars().take(n).collect());
}
v
}

fn gen_big_descending(len: usize) -> Vec<[u64; 16]> {
(0..len as u64).rev().map(|x| [x; 16]).take(len).collect()
fn gen_big_random(len: usize) -> Vec<[u64; 16]> {
let mut rng = thread_rng();
rng.gen_iter().map(|x| [x; 16]).take(len).collect()
}

macro_rules! sort_bench {
($name:ident, $gen:expr, $len:expr) => {
macro_rules! sort {
($f:ident, $name:ident, $gen:expr, $len:expr) => {
#[bench]
fn $name(b: &mut Bencher) {
b.iter(|| $gen($len).sort());
b.iter(|| $gen($len).$f());
b.bytes = $len * mem::size_of_val(&$gen(1)[0]) as u64;
}
}
}

sort_bench!(sort_small_random, gen_random, 10);
sort_bench!(sort_small_ascending, gen_ascending, 10);
sort_bench!(sort_small_descending, gen_descending, 10);

sort_bench!(sort_small_big_random, gen_big_random, 10);
sort_bench!(sort_small_big_ascending, gen_big_ascending, 10);
sort_bench!(sort_small_big_descending, gen_big_descending, 10);

sort_bench!(sort_medium_random, gen_random, 100);
sort_bench!(sort_medium_ascending, gen_ascending, 100);
sort_bench!(sort_medium_descending, gen_descending, 100);

sort_bench!(sort_large_random, gen_random, 10000);
sort_bench!(sort_large_ascending, gen_ascending, 10000);
sort_bench!(sort_large_descending, gen_descending, 10000);
sort_bench!(sort_large_mostly_ascending, gen_mostly_ascending, 10000);
sort_bench!(sort_large_mostly_descending, gen_mostly_descending, 10000);

sort_bench!(sort_large_big_random, gen_big_random, 10000);
sort_bench!(sort_large_big_ascending, gen_big_ascending, 10000);
sort_bench!(sort_large_big_descending, gen_big_descending, 10000);
macro_rules! sort_expensive {
($f:ident, $name:ident, $gen:expr, $len:expr) => {
#[bench]
fn $name(b: &mut Bencher) {
b.iter(|| {
let mut v = $gen($len);
let mut count = 0;
v.$f(|a: &u64, b: &u64| {
count += 1;
if count % 1_000_000_000 == 0 {
panic!("should not happen");
}
(*a as f64).cos().partial_cmp(&(*b as f64).cos()).unwrap()
});
black_box(count);
});
b.bytes = $len as u64 * mem::size_of::<u64>() as u64;
}
}
}

#[bench]
fn sort_large_random_expensive(b: &mut Bencher) {
let len = 10000;
b.iter(|| {
let mut v = gen_random(len);
let mut count = 0;
v.sort_by(|a: &u64, b: &u64| {
count += 1;
if count % 1_000_000_000 == 0 {
panic!("should not happen");
}
(*a as f64).cos().partial_cmp(&(*b as f64).cos()).unwrap()
});
black_box(count);
});
b.bytes = len as u64 * mem::size_of::<u64>() as u64;
}
sort!(sort, sort_small_ascending, gen_ascending, 10);
sort!(sort, sort_small_descending, gen_descending, 10);
sort!(sort, sort_small_random, gen_random, 10);
sort!(sort, sort_small_big_random, gen_big_random, 10);
sort!(sort, sort_medium_random, gen_random, 100);
sort!(sort, sort_large_ascending, gen_ascending, 10000);
sort!(sort, sort_large_descending, gen_descending, 10000);
sort!(sort, sort_large_mostly_ascending, gen_mostly_ascending, 10000);
sort!(sort, sort_large_mostly_descending, gen_mostly_descending, 10000);
sort!(sort, sort_large_random, gen_random, 10000);
sort!(sort, sort_large_big_random, gen_big_random, 10000);
sort!(sort, sort_large_strings, gen_strings, 10000);
sort_expensive!(sort_by, sort_large_random_expensive, gen_random, 10000);

sort!(sort_unstable, sort_unstable_small_ascending, gen_ascending, 10);
sort!(sort_unstable, sort_unstable_small_descending, gen_descending, 10);
sort!(sort_unstable, sort_unstable_small_random, gen_random, 10);
sort!(sort_unstable, sort_unstable_small_big_random, gen_big_random, 10);
sort!(sort_unstable, sort_unstable_medium_random, gen_random, 100);
sort!(sort_unstable, sort_unstable_large_ascending, gen_ascending, 10000);
sort!(sort_unstable, sort_unstable_large_descending, gen_descending, 10000);
sort!(sort_unstable, sort_unstable_large_mostly_ascending, gen_mostly_ascending, 10000);
sort!(sort_unstable, sort_unstable_large_mostly_descending, gen_mostly_descending, 10000);
sort!(sort_unstable, sort_unstable_large_random, gen_random, 10000);
sort!(sort_unstable, sort_unstable_large_big_random, gen_big_random, 10000);
sort!(sort_unstable, sort_unstable_large_strings, gen_strings, 10000);
sort_expensive!(sort_unstable_by, sort_unstable_large_random_expensive, gen_random, 10000);
1 change: 1 addition & 0 deletions src/libcollections/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,7 @@
#![feature(shared)]
#![feature(slice_get_slice)]
#![feature(slice_patterns)]
#![cfg_attr(not(test), feature(sort_unstable))]
#![feature(specialization)]
#![feature(staged_api)]
#![feature(str_internals)]
Expand Down
162 changes: 134 additions & 28 deletions src/libcollections/slice.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1092,6 +1092,39 @@ impl<T> [T] {
merge_sort(self, |a, b| a.lt(b));
}

/// Sorts the slice using `compare` to compare elements.
///
/// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
///
/// # Current implementation
///
/// The current algorithm is an adaptive, iterative merge sort inspired by
/// [timsort](https://en.wikipedia.org/wiki/Timsort).
/// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
/// two or more sorted sequences concatenated one after another.
///
/// Also, it allocates temporary storage half the size of `self`, but for short slices a
/// non-allocating insertion sort is used instead.
///
/// # Examples
///
/// ```
/// let mut v = [5, 4, 1, 3, 2];
/// v.sort_by(|a, b| a.cmp(b));
/// assert!(v == [1, 2, 3, 4, 5]);
///
/// // reverse sorting
/// v.sort_by(|a, b| b.cmp(a));
/// assert!(v == [5, 4, 3, 2, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn sort_by<F>(&mut self, mut compare: F)
where F: FnMut(&T, &T) -> Ordering
{
merge_sort(self, |a, b| compare(a, b) == Less);
}

/// Sorts the slice using `f` to extract a key to compare elements by.
///
/// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
Expand Down Expand Up @@ -1122,37 +1155,118 @@ impl<T> [T] {
merge_sort(self, |a, b| f(a).lt(&f(b)));
}

/// Sorts the slice using `compare` to compare elements.
/// Sorts the slice, but may not preserve the order of equal elements.
///
/// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.
/// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
/// and `O(n log n)` worst-case.
///
/// # Current implementation
///
/// The current algorithm is an adaptive, iterative merge sort inspired by
/// [timsort](https://en.wikipedia.org/wiki/Timsort).
/// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
/// two or more sorted sequences concatenated one after another.
/// The current algorithm is based on Orson Peters' [pdqsort][pattern-defeating quicksort],
/// which is a quicksort variant designed to be very fast on certain kinds of patterns,
/// sometimes achieving linear time. It is randomized but deterministic, and falls back to
/// heapsort on degenerate inputs.
///
/// Also, it allocates temporary storage half the size of `self`, but for short slices a
/// non-allocating insertion sort is used instead.
/// It is generally faster than stable sorting, except in a few special cases, e.g. when the
/// slice consists of several concatenated sorted sequences.
///
/// # Examples
///
/// ```
/// #![feature(sort_unstable)]
///
/// let mut v = [-5, 4, 1, -3, 2];
///
/// v.sort_unstable();
/// assert!(v == [-5, -3, 1, 2, 4]);
/// ```
///
/// [pdqsort]: https://github.com/orlp/pdqsort
// FIXME #40585: Mention `sort_unstable` in the documentation for `sort`.
#[unstable(feature = "sort_unstable", issue = "40585")]
#[inline]
pub fn sort_unstable(&mut self)
where T: Ord
{
core_slice::SliceExt::sort_unstable(self);
}

/// Sorts the slice using `compare` to compare elements, but may not preserve the order of
/// equal elements.
///
/// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
/// and `O(n log n)` worst-case.
///
/// # Current implementation
///
/// The current algorithm is based on Orson Peters' [pdqsort][pattern-defeating quicksort],
/// which is a quicksort variant designed to be very fast on certain kinds of patterns,
/// sometimes achieving linear time. It is randomized but deterministic, and falls back to
/// heapsort on degenerate inputs.
///
/// It is generally faster than stable sorting, except in a few special cases, e.g. when the
/// slice consists of several concatenated sorted sequences.
///
/// # Examples
///
/// ```
/// #![feature(sort_unstable)]
///
/// let mut v = [5, 4, 1, 3, 2];
/// v.sort_by(|a, b| a.cmp(b));
/// v.sort_unstable_by(|a, b| a.cmp(b));
/// assert!(v == [1, 2, 3, 4, 5]);
///
/// // reverse sorting
/// v.sort_by(|a, b| b.cmp(a));
/// v.sort_unstable_by(|a, b| b.cmp(a));
/// assert!(v == [5, 4, 3, 2, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
///
/// [pdqsort]: https://github.com/orlp/pdqsort
// FIXME #40585: Mention `sort_unstable_by` in the documentation for `sort_by`.
#[unstable(feature = "sort_unstable", issue = "40585")]
#[inline]
pub fn sort_by<F>(&mut self, mut compare: F)
pub fn sort_unstable_by<F>(&mut self, compare: F)
where F: FnMut(&T, &T) -> Ordering
{
merge_sort(self, |a, b| compare(a, b) == Less);
core_slice::SliceExt::sort_unstable_by(self, compare);
}

/// Sorts the slice using `f` to extract a key to compare elements by, but may not preserve the
/// order of equal elements.
///
/// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
/// and `O(n log n)` worst-case.
///
/// # Current implementation
///
/// The current algorithm is based on Orson Peters' [pdqsort][pattern-defeating quicksort],
/// which is a quicksort variant designed to be very fast on certain kinds of patterns,
/// sometimes achieving linear time. It is randomized but deterministic, and falls back to
/// heapsort on degenerate inputs.
///
/// It is generally faster than stable sorting, except in a few special cases, e.g. when the
/// slice consists of several concatenated sorted sequences.
///
/// # Examples
///
/// ```
/// #![feature(sort_unstable)]
///
/// let mut v = [-5i32, 4, 1, -3, 2];
///
/// v.sort_unstable_by_key(|k| k.abs());
/// assert!(v == [1, 2, -3, 4, -5]);
/// ```
///
/// [pdqsort]: https://github.com/orlp/pdqsort
// FIXME #40585: Mention `sort_unstable_by_key` in the documentation for `sort_by_key`.
#[unstable(feature = "sort_unstable", issue = "40585")]
#[inline]
pub fn sort_unstable_by_key<B, F>(&mut self, f: F)
where F: FnMut(&T) -> B,
B: Ord
{
core_slice::SliceExt::sort_unstable_by_key(self, f);
}

/// Copies the elements from `src` into `self`.
Expand Down Expand Up @@ -1553,28 +1667,20 @@ unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
where F: FnMut(&T, &T) -> bool
{
// Slices of up to this length get sorted using insertion sort.
const MAX_INSERTION: usize = 20;
// Very short runs are extended using insertion sort to span at least this many elements.
const MIN_RUN: usize = 10;

// Sorting has no meaningful behavior on zero-sized types.
if size_of::<T>() == 0 {
return;
}

// FIXME #12092: These numbers are platform-specific and need more extensive testing/tuning.
//
// If `v` has length up to `max_insertion`, simply switch to insertion sort because it is going
// to perform better than merge sort. For bigger types `T`, the threshold is smaller.
//
// Short runs are extended using insertion sort to span at least `min_run` elements, in order
// to improve performance.
let (max_insertion, min_run) = if size_of::<T>() <= 2 * mem::size_of::<usize>() {
(64, 32)
} else {
(32, 16)
};

let len = v.len();

// Short arrays get sorted in-place via insertion sort to avoid allocations.
if len <= max_insertion {
if len <= MAX_INSERTION {
if len >= 2 {
for i in (0..len-1).rev() {
insert_head(&mut v[i..], &mut is_less);
Expand Down Expand Up @@ -1618,7 +1724,7 @@ fn merge_sort<T, F>(v: &mut [T], mut is_less: F)

// Insert some more elements into the run if it's too short. Insertion sort is faster than
// merge sort on short sequences, so this significantly improves performance.
while start > 0 && end - start < min_run {
while start > 0 && end - start < MIN_RUN {
start -= 1;
insert_head(&mut v[start..end], &mut is_less);
}
Expand Down
14 changes: 4 additions & 10 deletions src/libcollectionstest/slice.rs
Original file line number Diff line number Diff line change
Expand Up @@ -399,9 +399,10 @@ fn test_sort() {
}
}

// shouldn't panic
let mut v: [i32; 0] = [];
v.sort();
// Should not panic.
[0i32; 0].sort();
[(); 10].sort();
[(); 100].sort();

let mut v = [0xDEADBEEFu64];
v.sort();
Expand Down Expand Up @@ -441,13 +442,6 @@ fn test_sort_stability() {
}
}

#[test]
fn test_sort_zero_sized_type() {
// Should not panic.
[(); 10].sort();
[(); 100].sort();
}

#[test]
fn test_concat() {
let v: [Vec<i32>; 0] = [];
Expand Down
Loading

0 comments on commit cab4bff

Please sign in to comment.