Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Aiplan4eu up bridge #266

Merged
merged 14 commits into from
Sep 12, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
164 changes: 164 additions & 0 deletions examples/up_bridge.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
# Copyright (c) AIRBUS and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import sys
from skdecide.hub.domain.up import UPDomain
from skdecide.hub.solver.up import UPSolver
from skdecide.hub.solver.lazy_astar import LazyAstar

import unified_planning
from unified_planning.shortcuts import (
UserType,
BoolType,
OneshotPlanner,
Fluent,
InstantaneousAction,
Not,
)

from skdecide.utils import rollout

# Example 1: Solving a basic example, the same as
# https://github.com/aiplan4eu/unified-planning/blob/master/docs/notebooks/01-basic-example.ipynb

print("\n\n=== EXAMPLE 1: Solving UP's basic example using skdecide's UP solver ===\n")

## Step 1: modeling the UP problem

Location = UserType("Location")
robot_at = unified_planning.model.Fluent("robot_at", BoolType(), l=Location)
connected = unified_planning.model.Fluent(
"connected", BoolType(), l_from=Location, l_to=Location
)

move = unified_planning.model.InstantaneousAction(
"move", l_from=Location, l_to=Location
)
l_from = move.parameter("l_from")
l_to = move.parameter("l_to")
move.add_precondition(connected(l_from, l_to))
move.add_precondition(robot_at(l_from))
move.add_effect(robot_at(l_from), False)
move.add_effect(robot_at(l_to), True)

problem = unified_planning.model.Problem("robot")
problem.add_fluent(robot_at, default_initial_value=False)
problem.add_fluent(connected, default_initial_value=False)
problem.add_action(move)

NLOC = 10
locations = [unified_planning.model.Object("l%s" % i, Location) for i in range(NLOC)]
problem.add_objects(locations)

problem.set_initial_value(robot_at(locations[0]), True)
for i in range(NLOC - 1):
problem.set_initial_value(connected(locations[i], locations[i + 1]), True)

problem.add_goal(robot_at(locations[-1]))

## Step 2: creating the scikit-decide's UPDomain

domain_factory = lambda: UPDomain(problem)
domain = domain_factory()

## Step 3: solving the UP problem with scikit-decide's UP engine

if UPSolver.check_domain(domain):
with UPSolver(
operation_mode=OneshotPlanner,
name="pyperplan",
engine_params={"output_stream": sys.stdout},
) as solver:
UPDomain.solve_with(solver, domain_factory)
rollout(
domain,
solver,
num_episodes=1,
max_steps=100,
max_framerate=30,
outcome_formatter=None,
)


# Example 2: Solving a numeric example, the same as https://github.com/aiplan4eu/unified-planning/blob/master/docs/notebooks/02-optimal-planning.ipynb

print(
"\n\n=== EXAMPLE 2: Solving UP's numeric example using skdecide's UP ENHSP solver ===\n"
)

## Step 1: modeling the UP problem

x = Fluent("x")
y = Fluent("y")

a = InstantaneousAction("a")
a.add_precondition(Not(x))
a.add_effect(x, True)

b = InstantaneousAction("b")
b.add_precondition(Not(y))
b.add_effect(y, True)

c = InstantaneousAction("c")
c.add_precondition(y)
c.add_effect(x, True)

problem = unified_planning.model.Problem("simple_with_costs")

problem.add_fluent(x)
problem.add_fluent(y)

problem.add_action(a)
problem.add_action(b)
problem.add_action(c)

problem.set_initial_value(x, False)
problem.set_initial_value(y, False)

problem.add_goal(x)

problem.add_quality_metric(
unified_planning.model.metrics.MinimizeActionCosts({a: 10, b: 1, c: 1})
)

## Step 2: creating the scikit-decide's UPDomain

domain_factory = lambda: UPDomain(problem)
domain = domain_factory()

## Step 3: solving the UP problem with scikit-decide's UP engine

if UPSolver.check_domain(domain):
with UPSolver(
operation_mode=OneshotPlanner,
name="enhsp-opt",
engine_params={"output_stream": sys.stdout},
) as solver:
UPDomain.solve_with(solver, domain_factory)
rollout(
domain,
solver,
num_episodes=1,
max_steps=100,
max_framerate=30,
outcome_formatter=None,
)

# Example 3: Solving the same UP numeric problem but with scikit-decide's A* algorithm

print(
"\n\n=== EXAMPLE 3: Solving UP's numeric example using skdecide's LazyAstar solver ===\n"
)

if LazyAstar.check_domain(domain):
with LazyAstar() as solver:
UPDomain.solve_with(solver, domain_factory)
rollout(
domain,
solver,
num_episodes=1,
max_steps=100,
max_framerate=30,
outcome_formatter=None,
)
11 changes: 8 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -63,11 +63,16 @@ ray = {extras = ["rllib"], version = ">=1.2.0", optional = true}
discrete-optimization = {version = ">=0.2.1", optional = true}
openap = {version = ">=1.3", optional = true}
pygeodesy = {version = ">=23.6.12", optional = true}
unified-planning = {version = "^1.0.0.77.dev1", python = ">=3.10", allow-prereleases = true, optional = true}
up-tamer = {version = "^1.0.0.1.dev1", python = ">=3.10", allow-prereleases = true, optional = true}
up-fast-downward = {version = "^0.3.0", python = ">=3.10", allow-prereleases = true, optional = true}
up-enhsp = {version = "^0.0.19", python = ">=3.10", allow-prereleases = true, optional = true}
up-pyperplan = {version = "^1.0.0.1.dev1", python = ">=3.10", allow-prereleases = true, optional = true}

[tool.poetry.extras]
domains = [ "gym", "numpy", "matplotlib", "simplejson", "discrete-optimization", "openap", "pygeodesy" ]
solvers = [ "gym", "numpy", "joblib", "ray", "stable-baselines3", "discrete-optimization" ]
all = [ "gym", "numpy", "matplotlib", "simplejson", "joblib", "ray", "stable-baselines3", "discrete-optimization", "openap", "pygeodesy" ]
domains = [ "gym", "numpy", "matplotlib", "simplejson", "discrete-optimization", "openap", "pygeodesy", "unified-planning" ]
solvers = [ "gym", "numpy", "joblib", "ray", "stable-baselines3", "discrete-optimization", "unified-planning", "up-tamer", "up-fast-downward", "up-enhsp", "up-pyperplan" ]
all = [ "gym", "numpy", "matplotlib", "simplejson", "joblib", "ray", "stable-baselines3", "discrete-optimization", "openap", "pygeodesy", "unified-planning", "up-tamer", "up-fast-downward", "up-enhsp", "up-pyperplan" ]

[tool.poetry.plugins."skdecide.domains"]
GymDomain = "skdecide.hub.domain.gym:GymDomain [domains]"
Expand Down
5 changes: 5 additions & 0 deletions skdecide/hub/domain/up/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Copyright (c) AIRBUS and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from .up import UPDomain, SkUPState, SkUPAction
Loading