This repository is no longer active.
The WebAssembly waterfall now uses the wasi-sysroot instead.
See:
- https://github.com/WebAssembly/waterfall/
- https://github.com/CraneStation/wasi-sysroot
The goal of this prototype was to get a WebAssembly libc off the ground. Limited dynamic linking (no cross-module function pointers) came out of it for free which is mighty convenient. We should:
- Focus on the libc aspect, with static linking.
- As a secondary goal use limited dynamic linking to inform WebAssembly's design.
Note: This experimental WebAssembly C library with limited dynamic linking is a hack. Don't rely on it: it's meant to inform the design of WebAssembly. Things are changing rapidly, so mixing different parts of the toolchain may break from time to time, try to keep them all in sync. In particular, the current WebAssembly design doesn't allow sharing heaps between modules. It's a convenience API in the V8 implementation which may be removed in the future.
In this experiment, limited dynamic linking is entirely done through JavaScript, which is acting as the dynamic linker / loader. This merely uses the WebAssembly object's capabilities as implemented today.
Pre-built Linux x86-64 Linux binaries are available on the waterfall, so are
musl.wast
, musl.wasm
, and wasm.js
. The waterfall marks as green the
builds which are known to work properly. Click on a green build to download the
archived binaries. Check out its last known good revision. You can build
everything yourself using the waterfall's build.py.
Compile your program using LLVM:
clang -S -O2 --target=wasm32-unknown-unknown foo.c
Creates a .s
assembly file. Link it:
s2wasm foo.s -o foo.wast
Creates a .wast
WebAssembly s-expression. Assemble it:
sexpr-wasm foo.wast -o foo.wasm
You now have a WebAssembly binary file.
Run .wasm
files which import libc functions:
d8 --expose-wasm musl/arch/wasm32/wasm.js -- foo.wasm musl-out/musl.wasm
Or run it without musl, using only wasm.js
to emulate libc:
d8 --expose-wasm musl/arch/wasm32/wasm.js -- foo.wasm
This may work... or not. File bugs on what's broken, or send patches!
In the current V8 implementation of WebAssembly binaries, each .wasm
module:
- Declares it imports and its exports.
- Takes in a dictionary mapping Foreign Function Interface (FFI) names to corresponding functions.
- Takes in its heap, an
ArrayBuffer
.
The wasm.js file:
- Initializes the heap.
- Implements a rudimentary C library in JavaScript, and adds these functions to the FFI object.
- Loads
.wasm
files provided on the command-line, from last to first. - Adds each exported function to the FFI object, sometimes shadowing the JavaScript fallback.
- Loads the first
.wasm
file provided and calls itsmain
function.
Each loaded .wasm
file is initialized with the same heap. They all share the
same address space.
Calls from one WebAssembly module to another trampoline through JavaScript, but they should optimize well. We should figure out what we suggest developers use, so that the default pattern doesn't require gymnastics on the compiler's part.
Indirect calls from one WebAssembly module to another do not work.
A WebAssembly module with un-met imports will throw. This can be handled, add
the missing function as a stub to FFI, and then load again (loop until success)
but it's silly. If WebAssembly modules were loadable, imports inspectable, and
FFI object provided later then we'd be better off. We could implement very fancy
lazy-loading, where the developer can handle load failures. We can easily
implement dlopen
/ dlsym
/ dlclose
as demonstrated by the <dlfcn.h>
example below.
It would also be good to be able to specify compilation / execution separately.
The current libc implementation builds a subset of musl using the hacked-up
libc.py
script. It excludes files which triggered bugs throughout the
toolchain, not that the files being built are bug free either.
The implementation is based on Emscripten's musl port, but is based on a much
more recent musl and has no modifications to musl's code: all changes are in the
arch/wasm32
directory. It aims to only communicate to the embedder using a
syscall API, modeled after Linux' own syscall API. This may have shortcomings,
but it's a good thing to try out since we can revisit later. Note the
musl_hack
functions in wasm.js
: they fill in for functionality that's
currently been hacked out and which musl expects to import. It should be
exporting these instead of importing them. Maybe more functionality should be
implemented in JavaScript, but experience with NaCl and Emscripten leads us to
believe the syscall API is a good boundary.
The eventual goal is for the WebAssembly libc to be upstreamed to musl, and that'll require doing it right according to the musl community. We also want Emscripten to be able to use the same libc implementation. The approach in this repository may not be the right one.
Dynamic linking and pointer-less dynamic linking aren't in WebAssembly's current MVP because we thought it would be hard. This repository shows that it's possible to expose limited but useful functionality, we therefore may as well design it right from the start, or make it entirely impossible for the MVP.
That'll including figuring out calling convention and ABI. Exports currently don't declare their signature in a WebAssembly module, even though they are in the binary format, and don't cause any failure when the APIs don't match. That should be fixed.
We'll also need to figure out how to make memory segments relocatable, and the AST references to the segments position independent. Do we even want to allow non-relocatable segments? The current implementation overwrites previous segments if they specify the same memory location.
It seems like user code should be managing all of the heap, the first module
that's loaded (even before libc) could therefore be a basic memory manager. The
dynamic loading mechanism (implemented in JavaScript) would then query this heap
manager to figure out where to locate segments, as well as to position user
stacks. libc's malloc
would then use this basic memory manager to implement
runtime memory management, the same would be true for stack positioning, thread
stacks, and thread-local storage allocation.
Interesting applications can be built when modules don't share the same
heap. They need to communicate through copy-in / copy-out functionality (such as
Linux' copy_from_user
/ copy_to_user
functions), and are then entirely
isolated from each other except for their API boundary. This allows applications
to instantiate their heap in a private closure and only expose APIs, providing
good isolation properties and preventing user code from overflow and other
security issues.
These basic experiments are finding bugs in the toolchain, if anything they're useful in making it more robust. It's also an unexpected usage of the APIs! It's better that we find it now and figure out what it means.
Having a standalone musl.wasm
is much simpler for code deployment and allows
caching.
Developers are in control: they can do the equivalent of -ffunction-sections
and -fdata-sections
but emit one .wasm
file per section. This allows them to
lazy-load and lazy-compile each function as needed, and even unload them when
the program doesn't need them anymore.
This example doesn't use musl.wasm
, it currently only uses wasm.js
. musl
could be used for this, it would be much cleaner (e.g. dlerror
could work and
return const char *
as it should), but it requires hooking up syscalls
properly.
Create dlhello.c
:
#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
typedef void (*world_type)();
void *handle = dlopen("dlworld.wasm", RTLD_NOW);
if (!handle) {
puts("dlopen failed:");
puts(dlerror());
abort();
}
dlerror();
world_type world = (world_type)dlsym(handle, "world");
const char *err = dlerror();
if (err) {
puts("dlsym failed:");
puts(err);
abort();
}
world();
dlclose(handle);
return 0;
}
And dlworld.c
:
#include <stdio.h>
void world() { puts("World!"); }
Compile the programs:
clang -S -O2 --target=wasm32-unknown-unknown ./dlhello.c
clang -S -O2 --target=wasm32-unknown-unknown ./dlworld.c
s2wasm dlhello.s -o dlhello.wast
s2wasm dlworld.s -o dlworld.wast
sexpr-wasm dlhello.wast -o dlhello.wasm
sexpr-wasm dlworld.wast -o dlworld.wasm
Execute it:
d8 --expose-wasm musl/arch/wasm32/wasm.js -- dlhello.wasm
Note that this currently doesn't work because the dlsym
implementation returns
the function from another module, and the implementation puts the functions in
different tables (hence the "limited" nature of this hacky dynamic
linking). call_indirect
can only call functions from the same module, whereas
call_import
can call functions from another module by trampolining through
JavaScript. We could fix this by:
- Forcing developers to use a function such as
dlcall
and provide handles for the module and symbol.dlcall
would trampoline through JavaScript. This requires that developers modify their code: C currently allows them to call thedlsym
result directly. - Map functions from all module into the same table.
- Map functions from other modules into the current one when
dlsym
is invoked, e.g. adding new functions to the_WASMEXP_
instance. This also requires trackingdlclose
properly.
This amounts to designing full dynamic linking correctly, which we may not want to do for MVP.