Skip to content

gix-path can use a fake program files location

High severity GitHub Reviewed Published Jul 18, 2024 in GitoxideLabs/gitoxide • Updated Nov 18, 2024

Package

cargo gix-path (Rust)

Affected versions

= 0.10.8

Patched versions

0.10.9

Description

Summary

When looking for Git for Windows so it can run it to report its paths, gix-path can be tricked into running another git.exe placed in an untrusted location by a limited user account.

Details

Windows permits limited user accounts without administrative privileges to create new directories in the root of the system drive. While gix-path first looks for git using a PATH search, in version 0.10.8 it also has a fallback strategy on Windows of checking two hard-coded paths intended to be the 64-bit and 32-bit Program Files directories:

https://github.com/Byron/gitoxide/blob/6cd8b4665bb7582f744c3244abaef812be39ec35/gix-path/src/env/git.rs#L9-L14

Existing functions, as well as the newly introduced exe_invocation function, were updated to make use of these alternative locations. This causes facilities in gix_path::env to directly execute git.exe in those locations, as well as to return its path or whatever configuration it reports to callers who rely on it.

Although unusual setups where the system drive is not C:, or even where Program Files directories have non-default names, are technically possible, the main problem arises on a 32-bit Windows system. Such a system has no C:\Program Files (x86) directory.

A limited user on a 32-bit Windows system can therefore create the C:\Program Files (x86) directory and populate it with arbitrary contents. Once a payload has been placed at the second of the two hard-coded paths in this way, other user accounts including administrators will execute it if they run an application that uses gix-path and do not have git in a PATH directory.

(While having git found in a PATH search prevents exploitation, merely having it installed in the default location under the real C:\Program Files directory does not. This is because the first hard-coded path's mingw64 component assumes a 64-bit installation.)

PoC

On a 32-bit (x86) Windows 10 system, with or without Git for Windows installed:

  1. Create a limited user account in lusrmgr.msc or the Settings application.
  2. Log in with that account and, using Windows Explorer or the mkdir command in PowerShell, create the directories C:\Program Files (x86)\Git\mingw32\bin. Although a limited user account cannot create regular files directly in C:\, it can create directories including one called Program Files (x86).
  3. Place a copy of C:\Windows\system32\calc.exe in C:\Program Files (x86)\Git\mingw32\bin and rename it from calc.exe to git.exe. A different test payload may be used if preferred, and the executable need not already be signed or trusted.
  4. Log out, and log in as a different user. This user may be an administrator.
  5. If gitoxide is not installed, install it. If cargo install gitoxide is used for the installation, then the version of gix-path used in the installation can be observed.
  6. The vulnerability is only exploitable if git cannot be found in a PATH search. So, in PowerShell, run gcm git to check if git is present in the PATH. If so, temporarily remove it. One way to do this is for the current shell only, by running $env:PATH to inspect it and by assigning $env:PATH = '...' where ... omits directories that contain git.
  7. Some commands that can be run outside a repository, and most commands that can be run inside a repository, will run the Calculator or other payload at least once per invocation. Try gix clone foo or, inside of a repository, gix status, gix config, gix is-changed, gix fetch, ein t hours, or ein t query. This is not exhaustive; most other gix and ein commands that access existing repository state or a network resource likewise run the payload.

Impact

Only Windows is affected. Exploitation is unlikely except on a 32-bit system. In particular, running a 32-bit build on a 64-bit system is not a risk factor. Furthermore, the attacker must have a user account on the system, though it may be a relatively unprivileged account. Such a user can perform privilege escalation and execute code as another user, though it may be difficult to do so reliably because the targeted user account must run an application or service that uses gix-path and must not have git in its PATH.

The main exploitable configuration is one where Git for Windows has been installed but not added to PATH. This is one of the options in its installer, though not the default option. Alternatively, an affected program that sanitizes its PATH to remove seemingly nonessential directories could allow exploitation. But for the most part, if the target user has configured a PATH in which the real git.exe can be found, then this cannot be exploited.

This vulnerability is comparable to CVE-2022-24765, in which an uncontrolled path like C:\.git\config, which a limited user can create, could supply configuration used by other users. However, in this case, exploitation is slightly simpler because, rather than using configuration, an executable is directly run.

References

@Byron Byron published to GitoxideLabs/gitoxide Jul 18, 2024
Published to the GitHub Advisory Database Jul 18, 2024
Reviewed Jul 18, 2024
Last updated Nov 18, 2024

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity Low
Attack Requirements None
Privileges Required Low
User interaction Passive
Vulnerable System Impact Metrics
Confidentiality High
Integrity High
Availability Low
Subsequent System Impact Metrics
Confidentiality None
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:L/AT:N/PR:L/UI:P/VC:H/VI:H/VA:L/SC:N/SI:N/SA:N

EPSS score

0.045%
(18th percentile)

Weaknesses

CVE ID

CVE-2024-40644

GHSA ID

GHSA-mgvv-9p9g-3jv4

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.